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Abstract

Financial markets frequently exhibit boom-and-bust cycles that are incompatible with standard linear time

series models. While anticipative heavy-tailed linear processes offer a promising alternative for modeling

such phenomena, they impose uniform bubble patterns across different episodes, contradicting empirical

evidence. This paper introduces a new model based on α-stable moving average aggregates that accommo-

dates heterogeneous bubble dynamics. We establish the theoretical properties of this model, demonstrating

that it admits a semi-norm representation on a unit cylinder, thereby enabling the prediction of extreme

trajectories with varying growth dynamics. We develop a minimum distance estimation procedure based

on the joint characteristic function and establish its asymptotic properties. Monte Carlo simulations con-

firm the estimator’s good finite-sample performance across various specifications. Our empirical application

to the CBOE Crude Oil ETF Volatility Index successfully decomposes observed volatility dynamics into

distinct components with different persistence properties, revealing that what appears as a single bubble

episode actually consists of multiple superimposed processes with heterogeneous growth rates and crash

probabilities.
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1. Introduction

Speculative assets on financial markets often exhibit periods of rapid price increases followed by sudden

crashes. These fluctuations, known as rational asset pricing bubbles when driven by deviations from the

fundamental value (as outlined by Blanchard and Watson , 1982; Tirole , 1985), have become increasingly

evident in global financial markets, alongside the well-established characteristics of heavy-tailed distributions

and clustered volatility. To explain how bubbles originate in markets, researchers have generally relied on

standard martingale theory (see e.g. Biagini et al. , 2014; Jarrow et al. , 2010; Protter , 2012), or added

further assumptions such as portfolio constraints or defaultable claims (see e.g. Biagini and Nedelcu , 2015;

Hugonnier, 2012; Jarrow et al. , 2012). More recent work has examined the role of zombie credits (Acharya

et al. , 2024), liquidity constraints (Acharya and Rajan , 2024), and risk premia (Allen et al. , 2023) in

bubble formation. A substantial literature documents the impact of bubbles on economic growth (Martin

and Ventura , 2012; Carvalho et al. , 2012) or on unemployment (Hashimoto and Im , 2016, 2019; Miao ,

2014; Miao et al. , 2016).

A growing body of economic literature emphasizes the significance of bubble phenomena beyond finance,

extending to macroeconomic modeling (Gouriéroux et al. , 2020; Hirano and Toda , 2024; Hirano et al. ,

2025).4 From a theoretical perspective, Hirano and Toda (2024) develop a comprehensive framework for

bubble economics, establishing conditions under which rational bubbles can emerge and persist even with

infinitely-lived representative agents deriving utility from wealth holdings. Lux and Sornette (2002) demon-

strates how agent interactions can create bubble formation, with bubbles growing in seemingly rational ways

driven by investor expectations. Their model effectively captures sudden dramatic crashes and replicates

the “fat tails” observed in empirical financial market data, suggesting that traditional representative ra-

tional agent models inadequately explain these phenomena. Agliari et al. (2018) develop a stock market

participation model with heterogeneous traders that produces boom-bust dynamics through the interplay

of different trading strategies, further highlighting how agent heterogeneity contributes to the emergence

of bubbles. Gouriéroux et al. (2020) show that linear rational expectation models admit multiple sta-

tionary dynamic equilibria due to nonlinear stationary solutions, which can exhibit speculative bubbles and

volatility-induced mean reversion while remaining consistent with transversality conditions in intertemporal

optimization models.

From an empirical perspective, the so-called mixed-causal (or anticipative) models appears as good

candidates (see e.g. Cavaliere et al. , 2020; Cubadda et al. , 2017; Fries and Zakoian , 2019; Gouriéroux

et al. , 2020; Gouriéroux and Zakoian , 2017; Hecq et al. , 2016, 2017a; Hencic and Gouriéroux, 2015) to

account the non-linear dynamics of the bubble and the non-Gaussian environment characterized by Lux and

Sornette (2002) and Gouriéroux et al. (2020). Indeed, future-oriented models may generate intermittent

4While our paper’s empirical focus remains on finance, we reserve potential macroeconomic applications for future research.
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periods of explosive growth and relative stability in a stationarity linear framework while also admitting a

regular time representation involving non-linear dynamics or non-i.i.d. innovations. Among others we can

mention Andrews et al. (2009); Behme (2011); Behme et al. (2011); Chen et al. (2017); Gouriéroux

and Jasiak (2016, 2017); Lanne and Saikkonen (2011, 2013); Saikkonen and Sandberg (2016). Most

importantly, this framework exhibits intriguing properties, such as a predictive distribution with lighter

tails than the marginal distribution. This enables more accurate predictions of higher-order moments (see

e.g. Fries, 2022) and forecasts based on pattern recognition (see Dumitrescu and Thomas , 2024; de Truchis et

al. , 2025a) which are critical for informed investment decisions (see de Truchis et al. , 2024). As emphasized

by Gouriéroux et al. (2020) this framework offers a robust approach to modeling bubble dynamics as it

relaxes the finite variance constraint while maintaining stationarity.

However, anticipative models impose a similar increase rate for all bubbles, fully determined by the non-

causal autoregressive coefficients Gouriéroux and Zakoian (2017). This lack of flexibility might conflicts

with empirical evidence on financial markets where the surge of explosive episodes can exhibit very different

pattern. Moreover, Gouriéroux et al. (2021) recall that aggregation implies various sources of noise and

is hence very different from mixed-causal AR processes and more generally, different from any two-sided

moving average. As it incorporates independent unobservable stochastic factors aggregation it is more

suitable for financial applications. For instance, if one want to build derivatives to hedge portfolios against

the uncertainty associated with the anticipative components and the risk of sudden bubble crashes, the two

factor of risk should be priced and accounted for in the derivatives.

In this paper, we make two contributions to the literature on econometric modeling of financial bubbles.

First, we introduce a novel flexible framework built on α-stable moving average aggregates that overcomes

a key limitation of existing anticipative heavy-tailed models, which impose uniform growth patterns across

different bubble episodes. Our approach allows for diverse bubble dynamics by aggregating multiple latent

components, each with distinct stochastic properties. We derive the theoretical tail properties of this model

and demonstrate that, similar to non-aggregated processes, it admits a semi-norm representation on a unit

cylinder, expect if one of the underling component is purely non-anticipative, thereby enabling the prediction

of extreme trajectories with heterogeneous growth patterns.

Second, we develop an inference procedure for anticipative stable aggregates, departing from Gouriéroux

and Zakoian (2017) and building upon Knight and Yu (2002). While Gouriéroux and Zakoian (2017) focus

on continuous support distributions for the aggregation weights in the specific case of anticipative Cauchy

AR(1) processes, our approach extends to the general α-stable case with discrete support, a framework

more suitable for empirical applications. We propose a deconvolution minimum distance estimator based on

the joint characteristic function that effectively identifies the model parameters. Our methodology draws

from Knight and Yu (2002), who established asymptotic theory for minimum distance estimation using

the empirical characteristic function in stationary time series, but we extend their approach to handle the
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heavy-tailed stable distributions. We also incorporate elements from Xu and Knight (2010), who explored

empirical characteristic function estimation of mixtures of normal parameters, adapting their insights to

our non-Gaussian, dependent context. The resulting procedure transforms the intractable likelihood into a

computationally feasible estimation method that simultaneously handles all parameters of interest, including

both the AR coefficients and the distribution parameters of the innovations. We establish the asymptotic

properties of our estimator under suitable regularity conditions, proving consistency and asymptotic normal-

ity with an explicit characterization of the asymptotic variance-covariance matrix. In contrast to existing

methods, our procedure estimates all model parameters simultaneously while maintaining computational

tractability, addressing a gap in the literature on stable ARMA modeling.

The Section 2 introduces the stable aggregates model and suggests a new minimum distance estimator

base on the characteristic functions of the unobserved latent components. Section 3 extends the represen-

tation theorem of de Truchis et al. (2025a) to stable aggregates and theoretically derive the conditions

under which the forecast of a stable aggregate is possible. The finite sample performance of the minimum

estimator are documented in Section 4 and an application to the CBOE Crude Oil ETF Volatility Index is

proposed in Section 5. Section 6 concludes and all proofs are postponed in the Appendix 7.

2. Estimating stable-aggregate of moving average

Consider Xt an α-stable moving average defined by

Xt =
∑
k∈Z

dkεt+k, εt
i.i.d.∼ S(α, β, σ, 0) (2.1)

with (dk) a real deterministic sequence such that if α 6= 1 or (α, β) = (1, 0),

0 <
∑
k∈Z
|dk|s < +∞, for some s ∈ (0, α) ∩ [0, 1], (2.2)

and if α = 1 and β 6= 0,

0 <
∑
k∈Z
|dk|
∣∣∣ ln |dk| ∣∣∣ < +∞. (2.3)

For dk = ρk, Xt is a simple strictly stationary anticipative AR(1). Adding the (α, β) = (1, 0) restrictions

(let say S1S), Xt actually comes down to the so-called anticipative Cauchy AR(1) studied, e.g., in Gouriéroux

and Jasiak (2018). As emphasized in the introduction, stable moving averages of the form (2.1) generate

trajectories bound to feature the same pattern t 7→ cdτ−t (up to a scaling c and a time shift τ) recurrently

through time. This can be seen as a strong limitation when it comes to time series modelling as argued by

Gouriéroux and Zakoian (2017) in the context of explosive bubbles. They suggest to alleviate this restriction

by considering processes resulting from the linear combination of different models.
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Definition 2.1. Let (X1,t), . . . , (XJ,t) be J ≥ 1 stable moving averages, each satisfying (2.1)-(2.3), for some

coefficients sequences (dj,k)k and mutually independent error sequences εj,t
i.i.d.∼ S(α, βj , 1, 0), j = 1, . . . , J .

Let also (πj)j=1,...,J be positive numbers summing to 1, σ > 0 be a scale parameter and define

Xt = σ

J∑
j=1

πjXj,t, for t ∈ Z.

We will call such process Xt a stable aggregate, and call Xj,t, j = 1, . . . , J the latent components of Xt.

The estimator we propose is valid for any strictly stationary stable aggregate, but in practice, it requires

to formally derive the characteristic function of the latent components which can be tedious. In the rest

of this section, we hence restrict our attention to dj,k = ρkj and βj = β. We relax this hypothesis in

Section 3 as linear combinations of stable moving averages fit naturally into the framework of de Truchis

et al. (2025a) that deals with the general α-stable moving average in (2.1). Notice that even in this

specific AR(1) framework, these aggregations feature much richer dynamics than single-component stable

anticipative processes. In particular, they are able to mimic most of financial assets dynamics, as illustrated

in Figure 1.

The occurrence of each component is governed by the weights πj , also crucially involved in the strict

stationarity condition of Xt
J∑
j=0

πsj
(1− |ρj |s)

<∞

for s ∈ (0, α) ∩ [0, 1]. Considering a continuum of values of parameter ρ in the aggregation,

Xt =
∫

(−1,1)
Xρ,tdπ(ρ),

Gouriéroux and Zakoian (2017) also provide identification and estimation conditions by deriving the joint

characteristic function of (Xt,Xt−1) for the anticipative Cauchy AR(1). Under Cauchy assumption they

derive a non-parametric estimator of the probability measure π. Unfortunately, their results no longer old

when we relax the restriction α = 1. We hence restrict our attention on a discrete support for π while

extending their approach to the (general) α-Stable family, hereafter referred as GαS. To disentangle the

elements of Xt we rely on the independence of the AR(1) components, the joint characteristic function

ϕX (u, v) = E
(

exp{i(uXt + vXt+1)}
)

= exp
(∑
j∈N

πj(ϕXj (u, v)
)

(2.4)

and the joint characteristic function of each latent component

ϕXj (u, v) = E
(

exp i(uXj,t + vXj,t+1)
)

= E
(

exp i(ρju+ v)Xj,t+1

)
E
(

exp iuσεj,t
)

(2.5)

for (u, v) ∈ R2. It follows that we have

logE
(

exp i(ρju+ v)Xj,t+1

)
= −σα |ρju+ v|α

1− |ρj |α
(

1− βi sign(ρju+ v) tan
(πα

2

))
logE

(
exp iuσεj,t

)
= −σα

(
1− βi sign(u) tan

(πα
2

))
|u|
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Figure 1: Simulated stable aggregate dynamics with two components. Top left: Distribution of weights for the two components

with ρ1 = 0.90, π1 = 0.40 for the first component and ρ2 = 0.70, π2 = 0.60 for the second component. Top right: The resulting

trajectory of the aggregated process Xt. Middle and bottom panels: The individual latent component processes with different

persistence parameters.
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and the Cauchy case is recovered for α = 1, β = 0:

logE
(

exp i(ρju+ v)Xj,t

)
= −σ |ρju+ v|

1− |ρj |

logE
(

exp iuσεj,t
)

= −σ|u|

As suggested by Knight and Yu (2002) and Gouriéroux and Zakoian (2017), one can rely on the empirical

counterpart of the joint characteristic function (ECF) to build a minimum distance estimator (MDE). The

ECF is simply defined as

ϕn(u, v) = 1
n− 1

n−1∑
j=1

exp(i(uXj+1 + vXj)) (2.6)

which can be decomposed into real and imaginary parts:

ϕn(u, v) = 1
n− 1

n−1∑
j=1

cos(uXj+1 + vXj) + 1
n− 1

n−1∑
j=1

i sin(uXj+1 + vXj) (2.7)

By the law of large numbers, ϕn(u, v) P→ ϕ(u, v; θ0) as n→∞, where θ0 denotes the true parameter values.

Then, the identification of the parameters θ = (σ, ρ1, . . . , ρJ , π1, . . . , πJ , α, β) relies on distinct asymptotic

behaviors of the joint characteristic function for different values of (u, v). For small values of u, the limit

behavior of (2.6) is dominated by the α-stable distribution’s properties. Specifically, for u > 0,

α = lim
u→0

log log |ϕn(u, 0)|−1

log |u| (2.8)

and

β = − lim
u→0

Im(logϕn(u, 0))
Re(logϕn(u, 0)) · cot πα2 . (2.9)

For the identification of the remaining parameters, we exploit the behavior of the function

gn(λ) = lim
u→0

log |ϕn(u, λu)|
|u|α

≈ −σα
J∑
j=1

παj

[
|1 + ρkλ|α

1− |ρj |α
+ |λ|α

]
(2.10)

for v = λu and λ ∈ R. By evaluating gn(λ) for 2J + 1 different values of λ, we can obtain a system of

equations to identify (σ, ρ1, . . . , ρJ , π1, . . . , πJ). Now we can define the MDE estimator as the minimizer of

the objective distance measure

DX (θ) =
∫ +∞

−∞

∫ +∞

−∞
|ϕn(u, v)− ϕ(u, v; θ)|2w(u, v)dudv (2.11)

where w(u, v) is a weighting function ensuring the convergence of the integral. The MDE estimator is then

defined as

θ̂n = arg min
θ
DX (θ). (2.12)
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Knight and Yu (2002), show that under the following regularity conditions, the MDE estimator has standard

limit theory. They suggest that it could accommodate α-stable models. Actually, some of their assumptions,

listed hereafter, does not readily extend to the α-stable case. The characteristic functions of α-stable

distributions are likely to exhibit singularities in their derivatives when α ∈ (0, 2), particularly near points

where |ρju+v|α vanishes. Without appropriate regularization through the weight function, these singularities

can cause the integrals defining the first and second derivatives of (2.11) to diverge. The following lemma

establishes the precise conditions under which Assumption A2 remains valid for α-stable AR(1) aggregates.

Lemma 2.1. Consider the MDE objective function defined by:

DX (θ) =
∫ +∞

−∞

∫ +∞

−∞
|ϕn(u, v)− ϕ(u, v; θ)|2w(u, v) du dv (2.13)

where w(u, v) = exp(−κ(u2 + v2)) with κ > 0 a positive constant.

Then,

(ι) For any α > 0, the objective function DX (θ) belongs to the differentiability class C1(Θ).

(ιι) For any α > 1, the objective function DX (θ) belongs to C2(Θ) and Assumption 3, 6, 7 and 8 are

satisfied.

Lemma 2.1, shows that we need to reduce the parameter space of α by introducing Assumption 2, in

addition to whole set of assumptions of Knight and Yu (2002), to recover their asymptotic theory in presence

of α-stable model. It also reveals the critical role of the decaying exponential weights w(u, v).

Assumption 1. θ ∈ Θ where the parameter space Θ ⊂ R2J+3 is a compact set with θ0 ∈ Int(Θ).

Assumption 2. The tail parameter space is such that α ∈ (1, 2) and w(u, v) is an exponential weight

function of form exp(−κ(u2 + v2)) with κ > 0 a positive constant.

Assumption 3. With probability one, DX (θ) is twice continuously differentiable under the integral sign

with respect to θ over Θ.

Assumption 4. The sequence {Xt} is strictly stationary and ergodic.

Assumption 5. Let D0(θ) =
∫∫
|ϕ(u, v; θ0)− ϕ(u, v; θ)|2w(u, v)dudv and D0(θ) = 0 only if θ = θ0.

Assumption 6. K(x; θ) is a measurable function of x for all θ and bounded, where

K(x; θ) =
∫∫ [

(cos(uxj+1 + vxj)− Re ϕ(u, v; θ))∂Re ϕ(u, v; θ)
∂θ

+(sin(uxj+1 + vxj)− Im ϕ(u, v; θ))∂Im ϕ(u, v; θ)
∂θ

]
w(u, v)dudv. (2.14)
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Assumption 7. The matrix

Σ(θ0) =
∫∫ (

∂ϕ(u, v; θ0)
∂θ

)(
∂ϕ(u, v; θ0)

∂θ′

)
w(u, v)dudv

is nonsingular and
∂2ϕ(u, v; θ)
∂θ∂θ′

is uniformly bounded by a w-integrable function over Θ.

Assumption 8. Let Fj be a σ-algebra such that {Kj ,Fj} is an adapted stochastic sequence, where Kj =

K(xj ; θ). We can think of Fj as being the σ-algebra generated by the entire current and past history of Kj.

Let νj = E[K0|Kj ,Kj−1, . . .]−E[K0|Kj−1,Kj−2, . . .] for j ≥ 0. Assume that E(K0|F−m) converges in mean

square to 0 as m→∞ and
∑∞
j=0 E[ν′jνj ]1/2 <∞.

Proposition 2.1. Under Assumptions 1-8

√
n(θ̂n − θ0) d→ N(0,Σ−1ΩΣ−1) (2.15)

where Σ and Ω are (2J + 2)× (2J + 2) matrices with the (i, k)-th elements given by:

Σik = E
(
∂2DX (θ)
∂θi∂θk

)
(2.16)

Ωik = E
(
∂DX (θ)
∂θi

∂DX (θ)
∂θk

)
(2.17)

where Ω can also be expressed as:

Ω = var(K(x1; θ0)) + 2
∞∑
j=2

cov(K(x1; θ0),K(xj ; θ0)) (2.18)

The proof of this theorem is omitted as, by Lemma 2.1, it follows from a straightforward extension of

Theorem 2.1 of Knight and Yu (2002). Notice that in our α-stable framework, unlike Xu and Knight

(2010), Σ and Ω have no closed-form solutions. Moreover, to alleviate the optimization problem from a

numerical standpoint, we directly estimate the products ς = σ × πj for j = 1, . . . , J .

3. Forecasting aggregation of moving averages

This section begins by summarizing relevant findings from de Truchis et al. (2025a), DFT henceforth,

concerning the description of stable random vectors on the unit cylinder.5 Let the vector X = (X1, . . . , Xd)

5We exclude the Gaussian case from further discussion as anticipative dynamics are not identifiable when α = 2.
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be an α-stable random vector, Γ a finite spectral measure on the Euclidean unit sphere Sd and µ0 a non-

random vector in Rd, such that,

E
[
ei〈u,X〉

]
= exp

{
−
∫
Sd

|〈u, s〉|α
(

1− i sign(〈u, s〉)w(α, 〈u, s〉)
)

Γ(ds) + i 〈u,µ0〉

}
, ∀u ∈ Rd,

(3.1)

where 〈·, ·〉 denotes the canonical scalar product, w(α, s) = tg
(
πα
2
)
, if α 6= 1, and w(1, s) = − 2

π ln |s|

otherwise, for s ∈ R. Drawing on DFT, we explore alternative representations of X where the integration

is performed over a unit cylinder C‖·‖d := {s ∈ Rd : ‖s‖ = 1}, defined by a semi-norm ‖ · ‖ on Rd, in

presence of stable aggregates. The reason why we are interested in alternative representations is that, in

the presence of the Euclidean norm, the spectral measure encodes information in all directions of Rd and

does not allow us to predict future elements of the vector X while ensuring that these future elements are

not themselves carriers of information for prediction. By contrast, the semi-norm ‖ · ‖ is flexible enough to

force some directions Rd to vanish.

We will say that X is representable on C
‖·‖
d if X can be written as in (3.1) with

(Sd,Γ,µ0) replaced by (C‖·‖d ,Γ‖·‖,µ0
‖·‖). As demonstrated in DFT for the single-component model,

X is representable on C‖·‖d ⇐⇒ Γ(K‖·‖) = 0 when α 6= 1 or if X is S1S. Moreover, Γ‖·‖(ds) =

‖s‖−αe Γ ◦ T−1
‖·‖ (ds) with T‖·‖ : Sd \ K‖·‖ −→ C

‖·‖
d defined by T‖·‖(s) = s/‖s‖. Importantly, this new

representation inherits from the traditional representation the following asymptotic conditional tail prop-

erty: for any Borel sets A,B ⊂ C‖·‖d with Γ‖·‖
(
∂(A ∩B)

)
= Γ‖·‖

(
∂B
)

= 0, and Γ‖·‖(B) > 0,

P‖·‖x (X, A|B) −→
x→+∞

Γ‖·‖(A ∩B)
Γ‖·‖(B)

, (3.2)

where ∂B (resp. ∂(A ∩B)) denotes the boundary of B (resp. A ∩B), and

P‖·‖x (X, A|B) := P
(
X

‖X‖
∈ A

∣∣∣∣‖X‖ > x,
X

‖X‖
∈ B

)
.

To build a forecasting strategy upon these theoretical results, DFT considers vectors of the form Xt =

(Xt−m, . . . , Xt, Xt+1, . . . , Xt+h), m ≥ 0, h ≥ 1, derived from a stable moving average process and choose,

without loss of generality, semi-norms satisfying

‖(x−m, . . . , x0, x1, . . . , xh)‖ = 0 ⇐⇒ x−m = . . . = x0 = 0, (3.3)

for any (x−m, . . . , xh) ∈ Rm+h+1. They show that for α 6= 1 and (α, β) = (1, 0), the representability of Xt

on a semi-norm unit cylinder depends on the number of observation m+1 but not on the prediction horizon

h. More precisely, they find that sequences of consecutive zero values in must either be of finite length or

extend infinitely to the left :

∀k ∈ Z,
[
(dk+m, . . . , dk) = 0 =⇒ ∀` ≤ k − 1, d` = 0

]
. (3.4)
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This result surprisingly establishes that the anticipativeness of a stable moving average is a necessary con-

dition (and sufficient for α 6= 1 and (α, β) = (1, 0)) to make use of (3.2) in order to feasibly predict Xt.

The more non-anticipative a moving average is (i.e., the larger the gaps of zeros in its forward-looking

coefficients), the larger m must be to achieve representability of (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) on the

appropriate unit cylinder.

3.1. Extending the representation to stable aggregates

To extend these results to stable aggregates, we first provide the spectral representation of paths of the

aggregated process Xt on the Euclidean unit sphere.

Lemma 3.1. Let Xt be an α-stable aggregate with latent moving averages (X1,t), . . . , (XJ,t) as in Definition

2.1, but now allowing βj ∈ [−1, 1] to vary across components, and Xt = (Xt−m, . . . ,Xt,Xt+1, . . . ,Xt+h) for

any m ≥ 0, h ≥ 1.

Then, Xt is α-stable and its spectral representation (Γ,µ0) on the Euclidean unit sphere Sm+h+1 writes

Γ = σα
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j ‖dj,k‖αe δ{ ϑdj,k

‖dj,k‖e

}, (3.5)

µ0 =

0, if α 6= 1

− 2σ
π

∑J
j=1

∑
k∈Z πjβjdj,k ln ‖σπjdj,k‖e, if α = 1

where dj,k = (dj,k+m, . . . , dj,k, dj,k−1, . . . , dj,k−h), wj,ϑ = (1 + ϑβj)/2, for any k ∈ Z, j = 1, . . . , J , δ is the

Dirac mass, ϑ ∈ S1 with S1 = {−1,+1}, and if dj,k = 0, the term vanishes by convention from the sums.

Notice that Γ = σα
∑J
j=1 π

α
j Γj , where Γj denotes the spectral measure of the pathXj,t from the moving

average (Xj,t), j = 1, . . . , J . If all the Xj,t’s are symmetric (βj = 0 for all j), then Xt and Γ are symmetric

as well, but the reciprocal however does not hold true. The measure Γ will be symmetric if and only if

σα
∑J
j=1 π

α
j

(
Γj(A) − Γj(−A)

)
= 0 for any Borel set A ⊂ Sm+h+1. The latter condition is necessary and

sufficient for Xt to be symmetric in the case where α 6= 1, whereas for α = 1, it guarantees that Xt will

be symmetric up to an additive shifting, as µ0 may be non-zero. The symmetry of paths intervenes in the

representability conditions provided in the following lemma.

Lemma 3.2. Let Xt be an α-stable aggregate with latent moving averages (X1,t), . . . , (XJ,t) as in Definition

2.1, where each component j has asymmetry parameter βj ∈ [−1, 1]. Let m ≥ 0, h ≥ 1 and ‖ · ‖ be a

semi-norm on Rm+h+1 satisfying (3.3). When either α 6= 1 or Xt ∼ S1S, the vector Xt is representable on

C
‖·‖
m+h+1 if and only if condition (3.4) holds with m for all coefficient sequences (dj,k)k, j = 1, . . . , J . For

α = 1 and Xt asymmetric, the vector Xt is representable on C‖·‖m+h+1 if and only if (3.4) holds and∑
k∈Z
‖dj,k‖e

∣∣∣∣ ln(‖dj,k‖/‖dj,k‖e)∣∣∣∣ < +∞, ∀j ∈ {1, . . . , J} (3.6)
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hold with m and h for all sequences (dj,k)k, j = 1, . . . , J .

The next proposition extends to stable aggregated processes the notion of past-representability introduced

in DFT and helps to understand to what extent anticipativeness is crucial in this more general framework.

Proposition 3.1. Let Xt be an α-stable aggregate with latent moving averages (X1,t), . . . , (XJ,t) as in Def-

inition 2.1, where Xt = σ
∑J
j=1 πjXj,t with scale parameter σ > 0.

(ι) Define for j = 1, . . . , J the setsMj = {m ≥ 1 : ∃k ∈ Z, dj,k+m = . . . = dj,k+1 = 0, dj,k 6= 0}, and

m0,j =

 sup Mj , if Mj 6= ∅,

0, if Mj = ∅.
(3.7)

(a) For α 6= 1, the aggregated process Xt is past-representable if and only if (Xj,t) is past-

representable for all j = 1, . . . , J , i.e.,

sup
j=1,...,J

m0,j < +∞. (3.8)

Moreover, letting m ≥ 0, h ≥ 1, Xt is (m,h)-past-representable if and only if (3.8) holds and m ≥

max
j=1,...,J

m0,j.

(b) For α = 1, the process Xt is past-representable if and only if (3.8) holds and there exists a pair

(m,h), m ≥ max
j=1,...,J

m0,j, h ≥ 1 such that either

Xt is S1S, or, Xt asymmetric and (3.6) holds for all sequences (dj,k)k.

If such a pair exists, then the process Xt is (m,h)-past-representable.

(ιι) Let ‖·‖ be a semi-norm satisfying (3.3) and assume that Xt is (m,h)-past-representable for some m ≥ 0,

h ≥ 1. The spectral representation (Γ‖·‖,µ‖·‖) of the vectorXt = (Xt−m, . . . ,Xt,Xt+1, . . . ,Xt+h) on C‖·‖m+h+1

is given by:

Γ‖·‖ = σα
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j ‖dj,k‖αδ{ ϑdj,k

‖dj,k‖

}, (3.9)

µ‖·‖ =

0, if α 6= 1

− 2σ
π

∑J
j=1

∑
k∈Z πjβjdj,k ln ‖σπjdj,k‖, if α = 1

(3.10)

where dj,k = (dj,k+m, . . . , dj,k, dj,k−1, . . . , dj,k−h), wj,ϑ = (1 + ϑβj)/2, for any k ∈ Z, j = 1, . . . , J , δ is the

Dirac mass, ϑ ∈ S1 with S1 = {−1,+1}, and if dj,k = 0, the term vanishes by convention from the sums.

The necessary condition (3.8) extends what was noticed in the Proposition 3 of de de Truchis et al.

(2025a), namely, that anticipativeness is a minimal requirement for past-representability. Importantly,
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notice that a single non-anticipative latent moving average is enough to render the aggregated process not

past-representable, regardless of the other latent components. Also, for α 6= 1, the past-representability of

an aggregated process is equivalent to that of its latent moving averages, but this does not seem to hold

in general for α = 1. In the latter case however, if all the latent moving averages are symmetric, that is,

β1 = . . . = βJ = 0, then the paths Xt are S1S for any m ≥ 0, h ≥ 1 and (ι)(b) collapses to (ι)(a).

The representability condition also simplifies in the case of aggregated ARMA processes and requires

each latent ARMA process to be anticipative.

Corollary 3.1. For any j = 1, . . . , J , let (Xj,t) be the ARMA strictly stationary solution of

Ψj(F )Φj(B)Xj,t = Θj(F )Hj(B)εj,t, with mutually independent sequences εj,t
i.i.d.∼ S(α, βj , 1, 0). Define

Xt = σ
∑J
j=1 πjXj,t for any positive weights πj summing to 1 and σ > 0. Then, for any α ∈ (0, 2),

(β1, . . . , βJ) ∈ [−1, 1]J , the following statements are equivalent:

(ι) (Xt) is past-representable,

(ιι) inf
j

deg(Ψj) ≥ 1,

(ιιι) sup
j
m0,j < +∞,

with the m0,j’s as in (3.7). Moreover, letting m ≥ 0, h ≥ 1, the aggregated process (Xt) is (m,h)-past-

representable if and only if for any j = 1, . . . , J , m0,j < +∞, and m ≥ max
j
m0,j.

3.2. Tail conditional distribution of stable aggregates

Now, we derive the tail conditional distribution of linear stable aggregates. The case of a general past-

representable stable aggregate is considered. We also pay a particular attention to the anticipative GαS

AR(1) because to the best of our knowledge, no deconvolution estimation techniques exists for stable aggre-

gates as defined in 2.1, except for the anticipative GαS AR(1) discussed in Section 2. To be relevant for the

prediction framework, the Borel set B appearing in Equation 3.2 has to be chosen such that the conditioning

event {‖Xt‖ > x}∩{Xt/‖Xt‖ ∈ B} is independent of the future realisations Xt+1, . . . ,Xt+h. For ‖·‖ a semi-

norm on Rm+h+1 satisfying (3.3), denote S‖·‖m+1 = {(s−m, . . . , s0) ∈ Rm+1 : ‖(s−m, . . . , s0, 0, . . . , 0)‖ = 1}.6

Then, for any Borel set V ⊂ S‖·‖m+1, define the Borel set B(V ) ⊂ C‖·‖m+h+1 as

B(V ) = V × Rh.

Notice in particular that for V = S
‖·‖
m+1, we have B(V ) = C

‖·‖
m+1. In the following, we will use Borel sets of

the above form to condition the distribution of the complete vector Xt/‖Xt‖ on the observed shape of the

past trajectory. The latter information is contained in the Borel set V , which we will typically assume to

be some small neighbourhood on S‖·‖m+1. It will be useful in the following to notice that

V × Rh =
{
s ∈ C‖·‖m+h+1 : f(s) ∈ V

}
,

6The set S‖·‖m+1 corresponds to the unit sphere of Rm+1 relative to the restriction of ‖ · ‖ to the first m+ 1 dimensions.
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where f the function defined by

f :
Rm+h+1 −→ Rm+1

(x−m, . . . , x0, x1, . . . , xh) 7−→ (x−m, . . . , x0)
. (3.11)

Let Xt an α-stable aggregate as in Definition 2.1. Assume Xt is (m,h)-past-representable, for some

m ≥ 0, h ≥ 1. Also, we know by Proposition 3.1 (ιι), that Γ‖·‖ is of the form

Γ‖·‖ = σα
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j ‖dj,k‖αδ{ ϑdj,k

‖dj,k‖

}. (3.12)

Proposition 3.2. Let Xt be an α-stable aggregate as in Definition 2.1. Assume Xt is (m,h)-past-

representable, for some m ≥ 0, h ≥ 1. Also, we know by Proposition 3.1 (ιι), that Γ‖·‖ is of the form

Γ‖·‖ = σα
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j ‖dj,k‖αδ{ ϑdj,k

‖dj,k‖

}. (3.13)

Under the above assumptions, we have

P‖·‖x
(
Xt, A

∣∣∣B(V )
)
−→
x→+∞

Γ‖·‖
({

ϑdj,k
‖dj,k‖

∈ A : ϑf(dj,k)
‖dj,k‖

∈ V
})

Γ‖·‖
({

ϑdj,k
‖dj,k‖

∈ C‖·‖m+h+1 : ϑf(dj,k)
‖dj,k‖

∈ V
}) , (3.14)

for any Borel sets A ⊂ C
‖·‖
m+h+1, V ⊂ S

‖·‖
m+1 such that

{
ϑdj,k
‖dj,k‖

∈ C
‖·‖
m+h+1 : ϑf(dj,k)

‖dj,k‖
∈ V

}
6= ∅,

Γ‖·‖
(
∂(A ∩B(V ))

)
= Γ‖·‖(∂B(V )) = 0, where B(V ) = V × Rh and f is as in (3.11).

Observe that setting V = S
‖·‖
m+1, and A an arbitrarily small closed neighbourhood of all the points

(ϑdj,k/‖dj,k‖)ϑ,j,k, as in the single-component case we have lim
x→+∞

P
(
Xt/‖Xt‖ ∈ A

∣∣∣‖Xt‖ > x
)

= 1. In

other terms, when far from central values, the trajectory of process (Xt) necessarily features patterns of the

same shape as some ϑdj,k/‖dj,k‖, which is a finite piece of a moving average’s coefficient sequence. The

index j indicates from which of the J underlying moving averages the pattern stems from, the index k points

to which piece (dj,k+m, . . . , dj,k, dj,k−1, . . . , dj,k−h) of this moving average it corresponds, and ϑ ∈ {−1,+1}

indicates whether the pattern is flipped upside down (in case the extreme event is driven by a negative value

of an error (εj,τ )). The likelihood of a pattern ϑdj,k/‖dj,k‖ can be evaluated by setting A to be a small

neighbourhood of that point. In particular, only one pattern dk/‖dk‖ can appear through time for J = 1

(up to a time shift and sign flipping). This is no longer the case in general for J ≥ 2, where the shape of

each extreme event appears as if being drawn from a collection of patterns.

Interestingly, as in de Truchis et al. (2025a) in the non-aggregated case, the observed path

(Xt−m, . . . ,Xt−1,Xt)/‖Xt‖ will a fortiori be of the same shape as some ϑ(dj,k+m, . . . , dj,k+1, dj,k)/‖dj,k‖
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when an extreme event will approach in time. Observing the initial part of the pattern can give information

about the remaining unobserved piece: the conditional likelihood of the latter can be assessed by setting V

to be a small neighbourhood of the observed pattern. In practice, we anticipate that matching an observed

path to a particular pattern j among the collection of J patterns will be challenging, even for a small number

of latent components.

3.3. Example: stable aggregation of AR(1)

We now consider the aggregation of stable anticipative AR(1) processes discussed in Section 2. We

assume without loss of generality that the ρj ’s are distinct. For each anticipative AR(1) with parameter

ρj , the moving average coefficients are of the form (ρkj1{k≥0})k, and thus, m0,j = 0 for all j, where the

m0,j ’s are given in (3.7). By Corollary (3.1), we know for any m ≥ 0, h ≥ 1, the aggregated process Xt
is (m,h)-past-representable. The spectral measures of paths Xt simplify and charge finitely many points.

Their forms are given in the next lemma.

Lemma 3.3. Let Xt be an aggregation of α-stable anticipative AR(1) processes as in Definition 2.1 with

dj,k = ρkj and general scale parameter σ > 0.

Letting Xt = (Xt−m, . . . ,Xt,Xt+1, . . . ,Xt+h) for m ≥ 0, h ≥ 1, its spectral measure on C
‖·‖
m+h+1 for a

seminorm satisfying (3.3) is given by

Γ‖·‖ =
∑
ϑ∈S1

[
wϑδ{(ϑ,0,...,0)} +

J∑
j=1

σαπαj

(
wj,ϑ

h−1∑
k=−m+1

‖dj,k‖αδ{ ϑdj,k
‖dj,k‖

} + w̄j,ϑ
1− |ρj |α

‖dj,h‖αδ{ ϑdj,h
‖dj,h‖

})],
(3.15)

where for all ϑ ∈ S1, j ∈ {1, . . . , J} and −m+ 1 ≤ k ≤ h,

dj,k = (ρk+m
j 1{k≥−m}, . . . , ρ

k
j1{k≥0}, ρ

k−1
j 1{k≥1}, . . . , ρ

k−h
j 1{k≥h}),

wj,ϑ = (1 + ϑβj)/2,

wϑ =
J∑
j=1

σαπαj wj,ϑ,

w̄j,ϑ = (1 + ϑβ̄j)/2,

β̄j = βj
1− ρ<α>j

1− |ρj |α
,

and if h = 1 and m = 0, the sum
∑h−1
k=−m+1 vanishes by convention.

The next proposition provides the tail conditional distribution of future paths in the case where the ρj ’s

are positive. Let us first introduce useful neighbourhoods of the distinct charged points of Γ‖·‖. Denote

d0,−m = (
m+h+1︷ ︸︸ ︷

1, 0, . . . , 0) so that the charged points of Γ‖·‖ are all of the form ϑdj,k/‖dj,k‖ with indexes (ϑ, j, k)
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in the set I := S1×
(
{1, . . . , J}×{−m,h}∪{(0,−m)}

)
. With f as in (3.11), define for any (ϑ0, j0, k0) ∈ I,

the set V0 as any closed neighbourhood of ϑ0f(dj0,k0)/‖dj0,k0‖ such that

∀(ϑ′, j′, k′) ∈ I, ϑ′f(dj′,k′)
‖dj′,k′‖

∈ V0 =⇒ ϑ′f(dj′,k′)
‖dj′,k′‖

= ϑ0f(dj0,k0)
‖dj0,k0‖

, (3.16)

In other terms, V0 × Rd is a subset of C‖·‖m+h+1 in which the only points charged by Γ‖·‖ all have the first

(m+1)th coinciding with ϑ0f(dj0,k0)/‖dj0,k0‖. Define also Aϑ,j,k for any (ϑ, j, k) as any closed neighbourhood

of ϑdj,k/‖dj,k‖ which does not contain any other charged point of Γ‖·‖, that is,

∀(ϑ′, j′, k′) ∈ I, ϑ′dj′,k′

‖dj′,k′‖
∈ Aϑ,j,k =⇒ (ϑ′, j′, k′) = (ϑ, j, k). (3.17)

Proposition 3.3. Let Xt be an aggregation of α-stable anticipative AR(1) processes as in Definition 2.1 with

dj,k = ρkj ∈ (0, 1) for all j’s.,Let Xt, the dj,k’s and the spectral measure of Xt be as given in Lemma 3.3, for

any m ≥ 0, h ≥ 1. Let V0 be any small closed neighbourhood of ϑ0f(dj0,k0)/‖dj0,k0‖ in the sense of (3.16)

for some (ϑ0, j0, k0) ∈ I and let B(V0) = V0 × Rh. Then, with Aϑ,j,k an arbitrarily small neighbourhood of

some ϑdj,k/‖dj,k‖ as in (3.17), the following hold.

(ι) Case m ≥ 1.

(a) If 0 ≤ k0 ≤ h:

P‖·‖x
(
Xt, Aϑ,j,k

∣∣∣B(V0)
)
−→
x→∞


|ρj0 |αk(1− |ρj0 |α)δϑ0(ϑ)δj0(j), 0 ≤ k ≤ h− 1,

|ρj0 |αhδϑ0(ϑ)δj0(j), k = h.

(b) If −m ≤ k0 ≤ −1:

P‖·‖x
(
Xt, Aϑ,j,k

∣∣∣B(V0)
)
−→
x→∞

δϑ0(ϑ)δj0(j)δk0(k).

(ιι) Case m = 0.

P‖·‖x
(
Xt, Aϑ,j,k

∣∣∣B(V0)
)
−→
x→∞



∑J
i=1 π

α
i wi,ϑ0∑J

i=1 pi,ϑ0

δ{ϑ0}(ϑ), k = 0

pj,ϑ0∑J
i=1 pi,ϑ0

|ρj |αk(1− |ρj |α)δ{ϑ0}(ϑ), 1 ≤ k ≤ h− 1,

pj,ϑ0∑J
i=1 pi,ϑ0

|ρj |αhδ{ϑ0}(ϑ), k = h,

with pj,ϑ0 = παj wj,ϑ0/(1− |ρj |α).

Form ≥ 1, that is, if the observed path is assumed to be of length at least 2, there is a significant difference

between whether k0 ∈ {0, . . . , h} or k0 ∈ {−m, . . . ,−1}. For the latter, the asymptotic probability of the
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whole path Xt/‖Xt‖ being in an arbitrarily small neighbourhood of ϑdj,k/‖dj,k‖ is 1 if and only if ϑ = ϑ0,

j = j0, k = k0: given the observed path, the shape of the future trajectory is fully determined. For the

former, this probability is strictly positive if and only if ϑ = ϑ0 and j = j0, but the observed pattern

is compatible with several distinct future paths. One can see why this is the case from the form of the

sequences dj,k/‖dj,k‖ and of their restrictions to the first m + 1 components f(dj,k)/‖dj,k‖. On the one

hand (omitting ϑ),

dj,k
‖dj,k‖

=



(

m+1︷ ︸︸ ︷
ρk+m
j , . . . , ρkj ,

h︷ ︸︸ ︷
ρk−1
j , . . . , ρj , 1, 0, . . . , 0)

‖(ρk+m
j , . . . , ρkj , ρ

k−1
j , . . . , ρj , 1, 0, . . . , 0)‖

, for k ∈ {0, . . . , h},

(ρk+m
j , . . . , ρj , 1, 0, . . . , 0, 0, . . . , 0)

‖(ρk+m
j , . . . , ρj , 1, 0, . . . , 0︸ ︷︷ ︸

m+1

, 0, . . . , 0︸ ︷︷ ︸
h

)‖
, for k ∈ {−m, . . . ,−1}.

We can notice that all the above sequences are pieces of explosive exponentials, terminated at some coordi-

nate. For k ∈ {0, . . . , h}, the first zero component, i.e. the crash of the bubble, is situated at or after the

(m + 2)th component, whereas for k ∈ {−m, . . . ,−1}, it is situated at or before the (m + 1)th. Using the

homogeneity of the semi-norm, we have on the other hand that

f(dj,k)
‖dj,k‖

=



(
m+1︷ ︸︸ ︷

ρmj , . . . , ρj , 1)
‖(ρmj , . . . , ρj , 1︸ ︷︷ ︸

m+1

, 0, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
h

)‖ , for k ∈ {0, . . . , h},

(

m+1︷ ︸︸ ︷
ρk+m
j , . . . , ρj , 1, 0, . . . , 0)

‖(ρk+m
j , . . . , ρj , 1, 0, . . . , 0︸ ︷︷ ︸

m+1

, 0, . . . , 0︸ ︷︷ ︸
h

)‖
, for k ∈ {−m, . . . ,−1}.

Thus, conditioning the trajectory on the event {f(Xt)/‖Xt‖ ≈ f(dj0,k0)/‖dj0,k0‖} for some k0 ∈

{−m, . . . ,−1} amounts to condition on the burst of a bubble being observed in the past trajectory with

no new bubble forming yet, which allows to identify exactly the position of the pattern on the jth moving

average’s coefficient sequence.

When conditioning with k0 ∈ {0, . . . , h} however, the crash date is not observed and can happen either

in the next h − 1 periods, or after the hth. However, the shape of the observed path is that of a piece of

exponential with growth rate ρ−1
j regardless of the remaining time before the burst, which leaves several

future paths possible. One can quantify the likelihood of each potential scenario: the quantity |ρj |αk(1−|ρj |α)

corresponds to the probability that the bubble will peak in exactly k periods (0 ≤ k < h), and |ρj |αh

corresponds to the probability that the bubble will last at least h more periods.
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The previous statement confirms the interpretation of the conditional moments proposed in Fries (2022)

for the stable anticipative AR(1) case (J = 1). It also extends it in two ways:

(ι) by accounting for paths rather than point prediction,

(ιι) by showing that the aggregation of AR(1) processes also features killed exponential explosive episodes

but with various growth rates and crash probabilities.

Proposition 3.3 furthermore shows that asymptotically, as few as two observations are sufficient to identify

the growth rate ρ−1
j of an ongoing extreme episode,7 and the conditional dynamics within this given event

will be similar to that of a simple AR(1) with corresponding parameter. An identification of the growth rate

in the early developments of the bubble appears possible, allowing to infer in advance the odds of crashes.

4. Monte-Carlo Simulation

This section presents Monte Carlo evidence on the performance of the estimation method for α-stable

moving average aggregates introduced in Section 2. We evaluate the estimator’s ability to recover the true

parameters under various specifications, focusing on the case where the observed process is generated by the

aggregation of two independent α-stable AR(1) processes. We generate samples according to the model

Xt = π1X1,t + π2X2,t (4.1)

Xj,t = ρjXj,t−1 + εj,t, εj,t
i.i.d.∼ S(α, β, 1, 0) (4.2)

where j ∈ {1, 2} and ρj ∈ (0, 1). We fix σ = 1.6, π1 = 7/16 and π2 = 9/16 for the weights of the mixture

in all scenarios. Recall that we alleviate the optimization problem by estimating the combined parameters

ςj = σ × πj for j = 1, . . . , J , thereby leading to ς1 = σ × π1 = 0.7 and ς2 = σ × π2 = 0.9. We examine three

specific cases:

1. Cauchy distribution (S1S): α = 1 and β = 0

2. Symmetric α-stable (SαS) distribution: general α with β = 0

3. General α-stable (GαS) distribution: general α with β 6= 0

For each case, we perform simulations with sample sizes of T = {250, 500, 1000}, each with 1,000 repli-

cations. The parameters are estimated using the minimum distance estimator based on the empirical

characteristic function as described in Section 2, uniform weights and grids for u and v defined as 10 equally

spaced points in [−0.5, 0.5]. One could achieve higher efficiency by computing optimal weights but we do

not explore further this issue.

7This holds asymptotically in the (semi-)norm of the observed path, but in practice it can be expected that the noise

surrounding the trajectory will make this identification difficult with only two observations. Longer path lengths (higher m)

may provide robustness to the identification, but could also incorporate some bias by taking into account past extreme events,

such as now-collapsed bubbles. One can suspect a bias-variance trade-off when searching for an optimal choice of m.
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In the S1S scenario, both components share the Cauchy distribution restrictions. Table 1 presents the

bias, the root mean square error (RMSE) and the mean relative error (MRE) for this scenario.

Table 1: Monte Carlo Results for S1S AR(1) Aggregates

T = 250 T = 500 T = 1000

θ True Value Bias RMSE MRE Bias RMSE MRE Bias RMSE MRE

ρ1 0.800 -0.008 0.050 0.046 -0.004 0.030 0.029 -0.002 0.020 0.019

ς1 0.700 -0.023 0.322 0.368 0.002 0.249 0.275 -0.002 0.179 0.196

ρ2 0.300 -0.035 0.169 0.455 -0.025 0.128 0.333 -0.012 0.089 0.223

ς2 0.900 -0.035 0.279 0.249 -0.015 0.193 0.171 -0.007 0.134 0.119

The estimation of S1S AR(1) aggregates demonstrates promising results across all parameters. For

smaller sample sizes of T = 250, the estimator already shows good performance with a moderate bias (-

0.008) and RMSE (0.050) for ρ1, though the MRE is slightly higher at 4.6%. For the largest coefficient

ρ1, the results figures out negligible bias (-0.001), low RMSE (0.035), and MRE of only 3.5% for T = 500.

These results further improve with the larger sample size, where the MRE decreases to 2.6% for T = 1000.

The combined parameter ς1 exhibits higher estimation uncertainty with an RMSE of 0.322 and MRE of

36.8% for T = 250, which improves to an RMSE of 0.201 and MRE of 22.7% for T = 500, and further to

0.147 and 16.9%, respectively, for T = 1000. The smallest autoregressive coefficient ρ2 appears slightly more

challenging to estimate, showing the highest mean relative error among all parameters (45.5% for T = 250,

34.8% for T = 500 and 26.6% for T = 1000). Importantly, the consistent reduction in RMSE and MRE

from T = 250 to T = 500 to T = 1000 across all parameters confirms that the estimator behaves well in

finite sample.

We now consider the SαS case with β = 0 and α = 1.5. The true autoregressive and scale parameters

remain the same as in the Cauchy case. The results are reported in Table 2. The results for SαS AR(1)

aggregates reveal interesting patterns. Compared to the Cauchy case, all parameters show higher RMSE and

mean relative errors, suggesting that estimation becomes more challenging when adding the identification of

α. With small samples of T = 250, we observe a notable positive bias (0.013) for ρ1 with RMSE of 0.081 and

MRE of 7.3%, while ρ2 shows substantial bias (-0.127) and MRE (60.0%). For the autoregressive coefficient

ρ1, the RMSE improves to 0.079 (compared to 0.035 in the Cauchy case) for T = 500, with a MRE of

7.8%. Similarly, ς1 shows a substantial increase in estimation uncertainty, with RMSE of 0.276 and MRE

of 33.0%. The parameter ρ2 continues to exhibit the highest MRE (47.4%), indicating persistent challenges

in its estimation. A notable result is the high precision in estimating the tail index α, with a small bias

(-0.037) and MRE of 8.6% even at T = 250, improving to a bias of 0.015, relatively low RMSE (0.123), and
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MRE of only 6.6% for T = 500. This improves further for T = 1000, with the MRE decreasing to 5.0%.

The accurate estimation of α is crucial for practical applications, as it characterizes the heaviness of the

tails of the distribution and it impact the identification of all other parameters. The increase in sample size

from T = 250 to T = 500 to T = 1000 leads to consistent improvements in all estimation metrics for most

parameters, though the magnitude of improvement varies across parameters. This confirms the good finite

sample properties of the estimator when departing from the Cauchy and extending Gouriéroux and Zakoian

(2017).

Table 2: Monte Carlo Results for SαS AR(1) Aggregates with α = 1.5

T = 250 T = 500 T = 1000

θ True Value Bias RMSE MRE Bias RMSE MRE Bias RMSE MRE

ρ1 0.800 0.013 0.081 0.073 0.000 0.062 0.057 -0.005 0.046 0.044

ς1 0.700 -0.101 0.276 0.325 -0.021 0.216 0.247 0.019 0.168 0.195

ρ2 0.300 -0.127 0.209 0.600 -0.096 0.190 0.529 -0.072 0.148 0.391

ς2 0.900 -0.124 0.235 0.212 -0.098 0.197 0.175 -0.071 0.153 0.135

α 1.500 -0.037 0.173 0.086 -0.014 0.127 0.065 -0.004 0.088 0.046

Finally, Table 3 presents the estimation results for the GαS AR(1) aggregates with both α = 1.5 and

β = 0.3. The estimation of GαS AR(1) aggregates introduces additional challenges due to the non-zero

asymmetry parameter β. At the smallest sample size of T = 250, the estimator already displays some

stability with a slight negative bias (-0.005) for ρ1, though with higher RMSE (0.091) and MRE (8.4%)

compared to simpler specifications. The autoregressive coefficient ρ1 shows a positive bias (0.006) for

T = 500, unlike the negative biases observed in the previous cases. Its RMSE (0.097) and MRE (9.6%)

are higher than both the Cauchy and SαS cases, indicating increased estimation difficulty. The parameter

ρ2 continues to be the most challenging among the autoregressive and scale parameters, with a substantial

negative bias (-0.089) and high mean relative error (59.4%) for T = 250, improving slightly with a negative

bias (-0.075), high RMSE (0.193), and MRE of 53.6% for T = 500. The combined parameters ς1 and ς2

also exhibit considerable estimation uncertainty. Despite these challenges, the tail index α is estimated

with remarkable precision even at T = 250 with a small bias (-0.026), RMSE of 0.164, and MRE of 8.3%,

improving to a minimal bias (-0.006), RMSE of 0.116, and MRE of just 6.2% for T = 500. This reinforces

the robustness of the estimator in recovering the tail behavior even in more complex settings. As expected,

the asymmetry parameter β proves to be the most difficult to estimate, with a MRE of 62.8% for T = 250

and 56.3% for T = 500. While this improves to 37.4% for T = 1000, it remains substantially higher than

the other parameters, highlighting the intrinsic difficulty in capturing the asymmetry in stable distributions.
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Fortunately, identification of AR and scales parameters do not depend on β meaning that this lack of

precision is not detrimental if one is not crucially interested in measuring accurately the asymmetry.

Table 3: Monte Carlo Results for GαS AR(1) Aggregates with α = 1.5, β = 0.3

T = 250 T = 500 T = 1000

θ True Value Bias RMSE MRE Bias RMSE MRE Bias RMSE MRE

ρ1 0.800 -0.005 0.091 0.084 -0.015 0.073 0.069 -0.013 0.057 0.055

ς1 0.700 -0.054 0.285 0.335 0.013 0.234 0.278 0.026 0.200 0.236

ρ2 0.300 -0.089 0.208 0.594 -0.068 0.186 0.510 -0.052 0.146 0.388

ς2 0.900 -0.124 0.234 0.211 -0.115 0.205 0.179 -0.092 0.178 0.154

α 1.500 -0.026 0.164 0.083 -0.009 0.120 0.060 -0.003 0.082 0.042

β 0.300 -0.007 0.262 0.628 -0.003 0.186 0.457 -0.001 0.132 0.328

5. Application to financial markets

To illustrate the empirical relevance of our estimator and forecasting theoretical results, we apply them

to financial data. In particular, we focus on the CBOE Crude Oil ETF Volatility Index (OVX) as it

reflects, by essence, the market’s anticipation regarding the volatility of crude oil ETF prices over the

next 30 days. In that sense, it aggregates all sources of investors’ expectations and this explains why VIX

indexes are often referred to as fear indices. In the traditional theoretical foundation of the efficient markets

hypothesis, agents are homogeneous and make rational use of all relevant information in their trading

decisions, thereby leading to perfectly random movement of prices. However, a large body of the financial

literature has identified various anomalies calling for heterogeneous agent models and in particular the so-

called fundamentalist/chartist dichotomy (e.g. Agliari et al. , 2018). These two types of agents are likely to

generate distinct dynamics in the crude oil volatility index, in particular when market fear is growing.

We collect the CBOE OVX index retrieved from the FRED (Federal Reserve Bank of St. Louis) website.

The dataset, ranging from 23/05/2015 to 23/05/2025, is sampled at weekly frequency (T = 522) and linearly

detrended to avoid high-frequency noise contamination (see Hecq and Voisin , 2021, for a discussion on the

pre-treatment of data). We estimate three different models as described in Section 4, with initial guess

obtained from the sequential estimation approach proposed by de Truchis et al. (2025b): a general α-stable

model with asymmetry (GαS), a symmetric α-stable model (SαS), and a symmetric Cauchy model (S1S).

The results in Table 4 reveal several compelling patterns about the dynamics of the OVX index. First,

the GαS specification provides strong evidence of anticipative dynamics, as demonstrated by the highly

significant AR coefficients (with estimated values of ρ1 = 0.80 and ρ2 = 0.85). We observe a clear distinction
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Table 4: Estimation results for OVX index with three different specifications

GαS SαS S1S

θ̂ Estimate Std. t-stats Estimate Std. t-stats Estimate Std. t-stats

ρ1 0.7989 0.0673 11.862 0.2507 0.0077 32.477 0.9226 0.0082 112.824

ρ2 0.8470 0.0668 12.678 0.9865 0.0040 244.560 0.9346 0.0074 126.404

α 1.4686 0.0995 14.764 1.2405 0.0084 147.613 – – –

β -0.1275 0.0684 -1.863 – – – – – –

σ 2.0932 0.2400 8.723 0.8964 0.0212 42.226 0.1966 0.0294 6.692

π1 0.2790 0.0403 6.930 0.8915 0.0052 171.084 0.5029 0.0511 9.833

π2 0.7210 0.0409 17.622 0.1085 0.0182 5.957 0.4971 0.0545 9.121

between the two latent components: the first component (ρ1 = 0.80) exhibits a slightly less persistent but

still strong bubble pattern, while the second component (ρ2 = 0.85) captures more persistent explosive

episodes. The weights associated with each component show an asymmetric pattern, with π1 = 0.28 and

π2 = 0.72, indicating a strong dominance of the second, more persistent component in the overall dynamics

of crude oil volatility expectations.

Second, the estimated tail index parameter α = 1.47 confirms the presence of heavy tails that signifi-

cantly exceed what a Gaussian distribution would accommodate, reflecting the extreme nature of oil market

volatility. The asymmetry parameter in the GαS specification is estimated at β = −0.13, with a t-statistic

of -1.86, suggesting a lack of significance at 5% risk level.

Third, while the SαS model yields statistically significant parameter estimates, it shows a markedly

different parameter structure with α = 1.24 and very different AR coefficients (ρ1 = 0.25, ρ2 = 0.99),

suggesting that the asymmetry, albeit probably not really significant, numerically plays a non-negligible role

in the model specification. The S1S (Cauchy) model, with its restriction of α = 1, appears overly restrictive

given the estimated α values in the more flexible models, though it still yields highly significant parameter

estimates with ρ1 = 0.92 and ρ2 = 0.93.

To better visualize how each component captures distinct anticipative dynamics, we implement the

deconvolution methodology proposed in de Truchis et al. (2025b) designed for extracting stable latent

components. Our implementation employs a dual Markov-chain Monte-Carlo filtering approach with 2,000

particles over a 5-period rolling window. Figure 2 presents the results, revealing a clear demarcation in the

roles of the two latent components. The dramatic spikes observed during periods of oil market turbulence

are captured by both components, with the first component (middle panel), characterized by its slightly

lower persistence coefficient (ρ̂1 = 0.80), capturing more abrupt movements, while the second component
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Figure 2: Deconvolution of the OVX index from the GαS two components model filtrated using de Truchis et al. (2025b)
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(bottom panel), with its higher persistence (ρ̂2 = 0.85), tracks the more sustained explosive patterns that

characterize prolonged periods of oil market uncertainty.

Notably, the visualization reveals that periods of high oil market volatility can occasionally feature a

superposition of two distinct bubble dynamics working simultaneously, with their combined effect visible

in the observed index (top panel). The recent volatility episodes visible in the sample demonstrate how

both components contribute to different aspects of oil market fear, with the first component providing rapid

responses to immediate shocks and the second component maintaining longer-term market anxiety. This

filtration-based visualization proves invaluable for matching observed market trajectories to specific dj,k
patterns among the collection generated by the latent components, thereby enhancing our ability to apply

the forecasting theory developed in Section 3.

To illustrate our forecasting framework in practice, we conduct an in-sample prediction exercise for

the 2020 oil market disruption event characterized by the significant volatility spike observed in the OVX

index during the COVID-19 pandemic and the oil price war. Setting January 2020 as our cutoff point, we

apply our methodology to forecast the subsequent crash dates for each of the identified latent components.

Our approach is fundamentally based on pattern recognition, exploiting the theoretical finding that during

extreme events, trajectories adhere to specific patterns characterized by the normalized form ϑdj,k/|dj,k|.

These pattern structures are defined by four essential elements: the shape derived from the coefficient

sequence dj,k; the component index j ∈ {1, . . . , J} identifying which latent process is driving the event; the

time shift k0 ∈ Z indicating the position within the pattern; and the sign ϑ ∈ {−1,+1} reflecting upward

or downward movements. Our prediction strategy implements a systematic four-step algorithm. First, we

observe the initial segment of an emerging extreme event. Second, we match this observed trajectory to

the collection of theoretical patterns derived from our estimated stable aggregate model, conditioning on an

m + 1 length of observed trajectory, thereby determining k0. Third, we compute conditional probabilities

for future trajectories using Proposition 3.2, which provides the mathematical foundation for calculating

tail conditional distributions. Finally, we generate forecasts for the remaining trajectory based on these

probabilistic assessments.

Table 5 presents the in-sample bubble forecast prediction probabilities derived from our empirical ap-

plication. Each component generates a finite collection of potential patterns that an extreme event might

follow. Proposition 3.3 provides explicit formulas for calculating the conditional probabilities of future tra-

jectories given an observed pattern. The length of the trajectory segment that we use for pattern matching

for each component is m = 20. For a bubble identified as originating from component j0 (see Figure 2),

our model provides precise probabilistic forecasts of its future trajectory. The probability of the bubble

crashing in exactly k periods is given by |ρj0 |αk(1− |ρj0 |α), while the probability of the bubble surviving at

least h periods is |ρj0 |αh. These probabilities correspond directly to the columns labeled “Crash at h” and

“Survive at h” in Table 5 for each component. Furthermore, the growth rate of the bubble is determined by
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ρ−1
j0

, which allows for trajectory forecasting once the component is identified. These forecasted values are

presented in the “Forecast” column of Table 5.

As shown in Table 5, for j0 = 1, we identify k0 = 3, which means that from the start date through the

third period, the crash has not yet occurred with certainty. Consequently, computing crash and survival

probabilities for these early periods is not meaningful as the probability of a crash during this period is

effectively zero. Only beginning in the fourth period do the crash probabilities become relevant, as this

represents the earliest possible point at which the bubble could collapse according to our identified pattern

structure. For j0 = 2, with k0 = 1, we observe that crash probabilities become relevant immediately in

the second period, reflecting the more immediate nature of bubbles generated by this component despite its

higher persistence.

A critical element in our forecasting framework is the risk threshold parameter (set to 99% in Table 5),

which allows practitioners to customize predictions according to their risk tolerance. Specifically, analysts

using our procedure can select an acceptable probability threshold, such as 90%, to determine when a bubble

is likely to crash. When the cumulative crash probability P (crash within k periods) = 1 − |ρj0 |αk exceeds

this threshold, the model predicts a crash; otherwise, it anticipates continued growth. This flexibility in

threshold selection creates a natural trade-off: higher thresholds (e.g., 99%) generate more extreme bubble

projections before predicting a crash, while lower thresholds (e.g., 90%) produce more conservative forecasts

with earlier predicted crash points. Figures 3 and 4 illustrate how this risk threshold impact the forecast

accuracy. For a comprehensive Monte Carlo study of the performance of this approach and its sensitivity

to the four key parameters, we direct the reader to the Monte Carlo simulation section of de Truchis et al.

(2025a).

In Table 5, we observe distinct predicted dynamics between the two latent components. The first

component (k0 = 3) suggests a gradual bubble formation with forecast values escalating from 11.27 at

the start to 208.73. However, with a relatively higher growth rate, this bubble collapses in the 14th period

(when using a 99% acceptable probability risk threshold). Conversely, the second component (k0 = 1)

suggests rapid build-up in crash probabilities. But with a relatively lower growth rate and probabilities

reaching 0.22 by the second period and exceeding 0.99 by the 19th period, this bubble exhibits a more

sustained but ultimately explosive episode that reaches higher absolute forecast values before crashing.

Finally, Figure 5 presents the combined forecast results at the 99% risk threshold, demonstrating the

practical implementation of our stable aggregate forecasting framework on the OVX index. The methodology

successfully captures the explosive trajectory leading to the March 2020 volatility spike, with the combined

forecast (red dashed line) closely tracking the realized path during the critical period. The identification of

the historical theoretical pattern (green line) starting in late 2019 provides the foundation for the forecast,

which accurately predicts both the timing and magnitude of the subsequent market disruption. Notably, the

combined forecast from both components generates a trajectory that reaches approximately 220 before the
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Figure 3: Forecast of the 2020 oil market bubble using the first component (ρ̂1 = 0.7989) from the OVX index filtration. The

top row displays crash probability profiles across three different acceptable probability risk thresholds: 0.9 (left), 0.95 (center),

and 0.99 (right). Each panel shows the probability of crashing at a given date (red line with circles), surviving beyond that

date (green line), the cumulative crash probability up to that date (blue line), and the respective threshold value (horizontal

dashed red line). The middle row presents zoomed-in forecasts for each threshold value, showing the real time series (blue line

with circles) and the forecasted values (colored squares) that continue until the crash is predicted to occur according to each

threshold. The vertical dashed red line indicates the end of the in-sample period (January 2020). The bottom panel situates

these forecasts within the complete time series (blue line), with the historical theoretical pattern (k0 = 3) shown in green. The

colored lines represent forecasts for different threshold values: 0.9 (yellow), 0.95 (green dashed), and 0.99 (red dashed). The

vertical black dotted line marks the pattern start, the vertical red dotted line indicates the end of the in-sample period, and

the shaded gray area represents the forecast zone. The length of the trajectory segment used for pattern matching is m = 20.
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Figure 4: Forecast of the 2020 oil market bubble using the second component (ρ̂2 = 0.8470) from the OVX index filtration. The

top row presents crash probability profiles for three different acceptable probability risk thresholds: 0.9 (left), 0.95 (center), and

0.99 (right). Each panel shows the probability of crashing at a given date (red line with circles), surviving beyond that date

(green line), the cumulative crash probability up to that date (blue line), and the corresponding threshold value (horizontal

dashed red line). The middle row displays zoomed-in forecasts for each threshold scenario, with the real time series (blue

line with circles) and forecasted values (colored squares). The vertical dashed red line marks the end of the in-sample period

(January 2020). The bottom panel places these forecasts in context of the complete time series (blue line), with the historical

theoretical pattern (k0 = 1) shown in green. The colored lines represent forecasts under different threshold values: 0.9 (yellow),

0.95 (green dashed), and 0.99 (red dashed). The black vertical dotted line indicates the pattern start, the red vertical dotted

line shows the end of the in-sample period, and the gray shaded area represents the forecast zone. The second component

exhibits different growth dynamics and crash patterns compared to the first component, reflecting the heterogeneous nature of

oil market volatility expectations. The length of the trajectory segment used for pattern matching is m = 20.
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Figure 5: To be commented

predicted crash, remarkably close to the observed peak of around 230 in the actual OVX series. This strong

forecasting performance validates our theoretical framework’s ability to provide early warning signals for

extreme volatility events in commodity markets, offering practitioners a quantitative tool for anticipating

and preparing for periods of exceptional market stress in the oil sector.

6. Conclusion

This paper addresses a fundamental limitation in the modeling of speculative bubbles in financial markets

by introducing a novel framework based on α-stable moving average aggregates. Traditional approaches

to bubble modeling face two critical shortcomings: Gaussian linear models fail to capture the extreme

events and heavy-tailed characteristics inherent in financial markets, while existing anticipative heavy-tailed

processes impose uniform bubble patterns across different episodes, contradicting the observed heterogeneity

in market dynamics.

Our contribution is both theoretical and methodological. Theoretically, we develop a flexible model

built on α-stable moving average aggregates that accommodates diverse bubble growth patterns and crash

dynamics. We establish that this model admits a semi-norm representation on a unit cylinder, similar to

non-aggregated moving averages, thereby enabling the forecasting of bubble episodes with heterogeneous

growth trajectories. We extend the spectral representation of stable processes to aggregated components

and derive conditions under which the tail conditional distribution can be used for prediction, showing that

anticipativeness remains a necessary condition for past-representability even in the aggregated case.

Methodologically, we develop a minimum distance estimation procedure based on the joint characteristic

function that effectively identifies the parameters of stable aggregates. Unlike existing approaches limited to

the Cauchy case with continuous support distributions, our framework extends to the general α-stable family
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with discrete support, making it more suitable for empirical applications. Our Monte Carlo simulations

demonstrate robust finite-sample performance across various specifications.

An empirical application to the CBOE OVX index reveals the presence of multiple anticipative compo-

nents with distinct persistence properties and asymmetric weights. The deconvolution analysis demonstrates

that what appears as a single volatility episode during the 2020 oil market disruption actually comprises

multiple superimposed processes with heterogeneous growth rates and crash probabilities. Our forecasting

framework successfully anticipates both the timing and magnitude of the March 2020 volatility spikes.

The pattern recognition approach underlying our forecasting methodology proves particularly valuable,

allowing practitioners to distinguish between different sources of market stress—rapid panic responses versus

slow-building fundamental concerns—and tailor their risk management strategies accordingly. The flexibil-

ity in risk threshold selection creates a natural trade-off between conservative and aggressive forecasting

strategies, accommodating different risk tolerance levels in practical applications.
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Table 5: In-sample bubble forecast: prediction probabilities

First component (k0 = 3) Second component (k0 = 1)

Date h Forecast Crash at h Survive at h Forecast Crash at h Survive at h

2020-01-05 0 11.2714 – – 11.2714 – –

2020-01-12 1 14.1087 – – 13.3068 0.2164 0.7836

2020-01-19 2 17.6601 – – 15.7098 0.3859 0.6141

2020-01-26 3 22.1056 0.6281 0.3719 18.5467 0.5188 0.4812

2020-02-02 4 27.6701 0.7326 0.2674 21.8958 0.6229 0.3771

2020-02-09 5 34.6325 0.8077 0.1923 25.8498 0.7045 0.2955

2020-02-16 6 43.3537 0.8617 0.1383 30.5178 0.7684 0.2316

2020-02-23 7 54.2668 0.9006 0.0994 36.0288 0.8185 0.1815

2020-03-01 8 67.9270 0.9285 0.0715 42.5349 0.8578 0.1422

2020-03-08 9 85.0258 0.9486 0.0514 50.2159 0.8886 0.1114

2020-03-15 10 106.4287 0.9630 0.0370 59.2839 0.9127 0.0873

2020-03-22 11 133.2193 0.9734 0.0266 69.9890 0.9316 0.0684

2020-03-29 12 166.7534 0.9810 0.0190 82.6283 0.9464 0.0536

2020-04-05 13 208.7292 0.9865 0.0135 97.5494 0.9580 0.0420

2020-04-12 14 0.0000 0.9901 0.0099 115.1651 0.9671 0.0329

2020-04-19 15 0.0000 0.9929 0.0071 135.9617 0.9742 0.0258

2020-04-26 16 0.0000 0.9949 0.0051 160.5139 0.9798 0.0202

2020-05-03 17 0.0000 0.9963 0.0037 189.4997 0.9842 0.0158

2020-05-10 18 0.0000 0.9974 0.0026 223.7200 0.9876 0.0124

2020-05-17 19 0.0000 0.9981 0.0019 0.0000 0.9903 0.0097
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7. Proofs

7.1. Proof of Lemma 2.1

We first establish the Ck(Θ) regularity of (2.11), the MDE objective function. The proof proceeds by

analyzing the theoretical characteristic function structure and establishing precise control over its deriva-

tives. We then show that under the condition obtained to insure that (2.11) belongs to the C2(Θ) class,

Assumptions 3, 6, 7 and 8 are satisfied.

7.1.1. First order derivatives analysis

For α-stable AR(1) aggregates, let rewrite (2.5) as logϕXj (u, v; θ) = −σα
[
|ρju+v|α
1−|ρj |α + |u|α

]
Φj(u, v;α, β)

with the asymmetry term

Φj(u, v;α, β) =


1− βi [sign(ρju+ v) + sign(u)] tan

(
πα
2
)

if α 6= 1

1 + βi
[

2sign(ρju+v)
π ln |ρju+ v|+ 2sign(u)

π ln |u|
]

if α = 1

Let K ⊂ Θ be any compact subset satisfying the uniform bounds infj,θ∈K(1 − |ρj |) ≥ δ > 0, infθ∈K α ≥

α0 > 0, supθ∈K σ ≤M <∞, and supθ∈K |β| ≤ B <∞. We analyze the first derivatives with respect to all

parameters θ = (σ, ρ1, . . . , ρJ , π1, . . . , πJ , α, β) and derive the following bounds.

(ι) The derivative with respect to πk is

∂ϕ

∂πk
(u, v; θ) = ϕ(u, v; θ) · απα−1

k logϕXk(u, v; θ)

thereby leading to∣∣∣∣ ∂ϕ∂πk (u, v; θ)
∣∣∣∣ ≤ |ϕ(u, v; θ)| · απα−1

k σα
[
|ρku+ v|α

1− |ρk|α
+ |u|α

]
(1 +B tan(πα/2))

≤ Cπ|ϕ(u, v; θ)|
[
|ρku+ v|α

δ
+ |u|α

]
where Cπ = αMα(1 +B tan(παmax/2)) with αmax = supθ∈K α.

(ιι) The derivative with respect to α is given by

∂ logϕXj
∂α

= −σα ln σ
[
|ρju+ v|α

1− |ρj |α
+ |u|α

]
Φj

− σα
[
|ρju+ v|α ln |ρju+ v|

1− |ρj |α
+ |u|α ln |u|

]
Φj

+ σα
[
|ρju+ v|α|ρj |α ln |ρj |

(1− |ρj |α)2

]
Φj + σα

[
|ρju+ v|α

1− |ρj |α
+ |u|α

]
∂Φj
∂α
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and leads the following bound∣∣∣∣∂ logϕXj
∂α

∣∣∣∣ ≤Mα| lnM |
[
|ρju+ v|α

δ
+ |u|α

]
(1 +B tan(παmax/2))

+Mα

[
|ρju+ v|α(| ln |ρju+ v||+ | ln |ρj ||)

δ
+ |u|α| ln |u||

]
(1 +B tan(παmax/2))

+Mα

[
|ρju+ v|α

δ
+ |u|α

]
πB

2 cos2(παmax/2)

Since logarithmic terms grow slower than any positive power, we have

| ln |ρju+ v||+ | ln |u|| = O((|ρju+ v|ε + |u|ε)) for any ε > 0

and hence∣∣∣∣∂ϕ∂α (u, v; θ)
∣∣∣∣ ≤ Cα|ϕ(u, v; θ)|

[
|ρju+ v|α+ε

δ
+ |u|α+ε

]
for some constant Cα depending on the compact set K.

(ιιι) The derivative with respect to σ is

∂ logϕXj
∂σ

(u, v; θ) = −ασα−1
[
|ρju+ v|α

1− |ρj |α
+ |u|α

]
Φj(u, v;α, β)

and implies the following bound∣∣∣∣∂ϕ∂σ (u, v; θ)
∣∣∣∣ ≤ |ϕ(u, v; θ)| · αMα−1

J∑
j=1

παj

[
|ρju+ v|α

1− |ρj |α
+ |u|α

]
(1 +B tan(παmax/2))

≤ Cσ|ϕ(u, v; θ)|

 J∑
j=1

|ρju+ v|α

δ
+ J |u|α


where Cσ = αMα−1(1 +B tan(παmax/2)).

(ιν) We now turn to the most critical case, the derivative with respect to ρk, given by

∂ logϕXk
∂ρk

= −σα ∂

∂ρk

[
|ρku+ v|α

1− |ρk|α

]
Φk − σα

[
|ρku+ v|α

1− |ρk|α
+ |u|α

]
∂Φk
∂ρk

The first term on the right hand side is

∂

∂ρk

[
|ρku+ v|α

1− |ρk|α

]
= α|ρku+ v|α−1sign(ρku+ v)u

1− |ρk|α
+ |ρku+ v|αα|ρk|α−1sign(ρk)

(1− |ρk|α)2

and we define the corresponding bound

T1(u, v) = α|u||ρku+ v|α−1

1− |ρk|α
≤ α|u||ρku+ v|α−1

δ

This term is problematic in view of the integrability requirement. At this stage we introduce w(u, v) =

exp(−κ(u2 + v2)) with κ a positive constant and prove convergence using polar coordinates of

I1 =
∫ +∞

−∞

∫ +∞

−∞

|u||ρku+ v|α−1

δ
exp(−κ(u2 + v2)) du dv
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Defining u = r cos θ, v = r sin θ, I1 becomes

I1 = 1
δ

∫ 2π

0

∫ ∞
0

r| cos θ| · rα−1|ρk cos θ + sin θ|α−1e−κr
2
r dr dθ

= 1
δ

∫ 2π

0
| cos θ||ρk cos θ + sin θ|α−1

[∫ ∞
0

rα+1e−κr
2
dr

]
dθ

where the radial integral converges for α > −2∫ ∞
0

rα+1e−κr
2
dr = Γ((α+ 2)/2)

2κ(α+2)/2

and the angular integral, near singularities where ρk cos θ + sin θ = 0, converges for α > 0∫ θ0+ε

θ0−ε
|ρk cos θ + sin θ|α−1dθ =

2(
√

1 + ρ2
k)α−1εα

α
<∞

Therefore for any α ∈ (0, 2),∣∣∣∣ ∂ϕ∂ρk (u, v; θ)
∣∣∣∣ ≤ Cρ|ϕ(u, v; θ)|

[
|u||ρku+ v|α−1

δ
+ |ρku+ v|α

δ2 + |u|α
]

(7.1)

where Cρ = σα(1 + B tan(παmax/2)), all terms being integrable for α > 0. This completes the first-order

derivative analysis with precise bounds, establishing uniform integrability that enables application of the

dominated convergence theorem for C1 regularity when α > 0.

7.1.2. Second-order derivatives analysis

Establishing C2 regularity lies in proving that second derivatives exist and are bounded. As revealed by

the first-order analysis, the most critical case is related to the ρj parameters. Hence, we only detailed our

analysis for ∂2ϕ/(∂ρk∂ρ`), using the same polar coordinate approach. Starting the expression in (ιν) we

have
∂2ϕ

∂ρ2
k

=
(
∂ϕ

∂ρk

)
· παk

∂ logϕXk
∂ρk

+ ϕ(u, v; θ) · παk
∂2 logϕXk

∂ρ2
k

The first term on the right hand side is bounded by the product of first-order bounds established in (7.1).

The second term is
∂2 logϕXk

∂ρ2
k

= −σα ∂2

∂ρ2
k

[
|ρku+ v|α

1− |ρk|α

]
Φk

− 2σα ∂

∂ρk

[
|ρku+ v|α

1− |ρk|α

]
∂Φk
∂ρk

− σα
[
|ρku+ v|α

1− |ρk|α
+ |u|α

]
∂2Φk
∂ρ2

k

and involves
∂2

∂ρ2
k

[
|ρku+ v|α

1− |ρk|α

]
= 1

1− |ρk|α
∂2

∂ρ2
k

|ρku+ v|α

+ 2α|ρk|α−1sign(ρk)
(1− |ρk|α)2

∂

∂ρk
|ρku+ v|α

+ |ρku+ v|αα(α− 1)|ρk|α−2 + 2α2|ρk|2α−1/(1− |ρk|α)
(1− |ρk|α)2
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showing that the most critical derivative is

∂2

∂ρ2
k

|ρku+ v|α = α(α− 1)u2|ρku+ v|α−2 (7.2)

and the most singular terms are of form

T2(u, v) = α(α− 1)u2|ρku+ v|α−2

1− |ρk|α
≤ α(α− 1)u2|ρku+ v|α−2

δ

Again, we invoke the weight function w(u, v) = exp(−κ(u2 + v2)) prove convergence using polar coordi-

nates of

I2 =
∫ +∞

−∞

∫ +∞

−∞

u2|ρku+ v|α−2

δ
exp(−κ(u2 + v2)) du dv

= 1
δ

∫ 2π

0

∫ ∞
0

r2 cos2 θ · rα−2|ρk cos θ + sin θ|α−2e−κr
2
r dr dθ

= 1
δ

∫ 2π

0
cos2 θ|ρk cos θ + sin θ|α−2

[∫ ∞
0

rα+1e−κr
2
dr

]
dθ

The angular integral becomes

Jα =
∫ 2π

0
cos2 θ|ρk cos θ + sin θ|α−2dθ

and the singularities occur when ρk cos θ + sin θ = 0, i.e., when tan θ = −ρk. Let θ0 = arctan(−ρk) be one

such point. Near θ0, using a local expansion

ρk cos θ + sin θ =
√

1 + ρ2
k sin(θ + φ) ≈

√
1 + ρ2

k(θ − θ0)

with φ = arctan(ρk). Then, the local behavior near θ0 is∫ θ0+ε

θ0−ε
cos2 θ|ρk cos θ + sin θ|α−2dθ ≈ cos2 θ0(

√
1 + ρ2

k)α−2
∫ θ0+ε

θ0−ε
|θ − θ0|α−2dθ

= cos2 θ0(
√

1 + ρ2
k)α−2 · 2

∫ ε

0
tα−2dt

= cos2 θ0(
√

1 + ρ2
k)α−2 · 2εα−1

α− 1

This local integral converges if and only if α − 2 > −1 ⇐⇒ α > 1. We now can define an appropriate

bound for Jα

Jα ≤ C(α, ρk) = 2πmaxθ cos2 θ

α− 1 (
√

1 + ρ2
k)α−2 +

∫
(0,2π)\

⋃
i
B(θ0,i,ε)

cos2 θ|ρk cos θ + sin θ|α−2dθ

where θ0,i = arctan(−ρk) + iπ are the singularity points in (0, 2π), B(θ0,i, ε) = (θ0,i − ε, θ0,i + ε) with ε > 0

sufficiently small, and the integral I2

I2 ≤
C(α, ρk)

δ
· Γ((α+ 2)/2)

2κ(α+2)/2) <∞

34



Notice that for k 6= `,

∂2ϕ

∂ρk∂ρ`
=
(
∂ϕ

∂ρ`

)
· παk

∂ logϕXk
∂ρk

,

the terms are products of first derivatives and therefore remain bounded when α > 0. Following similar

analysis, derivatives with respect to σ, πj , α, and β do not involve singular terms.

7.1.3. Application of Dominated Convergence Theorem

Having established uniform bounds on derivatives, we now can apply the dominated conver-

gence theorem to justify differentiation under the integral sign in (2.11). For any parameter θi ∈

{σ, ρ1, . . . , ρJ , π1, . . . , πJ , α, β}, we have shown:∣∣∣∣ ∂∂θi |ϕn(u, v)− ϕ(u, v; θ)|2
∣∣∣∣ ≤ 2|ϕn(u, v)− ϕ(u, v; θ)|

∣∣∣∣ ∂ϕ∂θi (u, v; θ)
∣∣∣∣ (7.3)

≤ 2(|ϕn(u, v)|+ |ϕ(u, v; θ)|)
∣∣∣∣ ∂ϕ∂θi (u, v; θ)

∣∣∣∣ (7.4)

Since |ϕn(u, v)| ≤ 1 and |ϕ(u, v; θ)| ≤ 1 and by the established uniform bounds∣∣∣∣ ∂ϕ∂θi (u, v; θ)
∣∣∣∣ ≤ Ci(θ)Gi(u, v) (7.5)

where Gi(u, v) are functions with∫ +∞

−∞

∫ +∞

−∞
Gi(u, v)w(u, v) du dv <∞, (7.6)

the dominating function is

H1(u, v) = 2 max
i
Ci(θ)Gi(u, v)w(u, v) (7.7)

Since
∫ +∞
−∞

∫ +∞
−∞ H1(u, v) du dv <∞, the dominated convergence theorem applies, and

∂DX
∂θi

(θ) =
∫ +∞

−∞

∫ +∞

−∞

∂

∂θi
|ϕn(u, v)− ϕ(u, v; θ)|2w(u, v) du dv,

showing that (2.11) is C1(Θ) for any α ∈ (0, 2) and the weight function as w(u, v) = exp(−κ(u2 + v2)) with

κ a positive constant. Regarding the second derivatives, for α > 1, we have established:∣∣∣∣∂2ϕ

∂ρ2
k

(u, v; θ)
∣∣∣∣ ≤ C2(θ)G2(u, v) (7.8)

where G2(u, v) is

G2(u, v) ∼ |ϕ(u, v; θ)| ·
[
u2|ρku+ v|α−2 +O(|u|α + |v|α)

]
(7.9)

For α > 1, we proved∫ +∞

−∞

∫ +∞

−∞
u2|ρku+ v|α−2e−κ(u2+v2) du dv <∞ (7.10)
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the second derivative of (2.11) exists when∣∣∣∣ ∂2

∂θi∂θj
|ϕn(u, v)− ϕ(u, v; θ)|2

∣∣∣∣ ≤ H2(u, v) (7.11)

where H2(u, v) includes terms of form

H2(u, v) ≤ 2
∣∣∣∣ ∂2ϕ

∂θi∂θj

∣∣∣∣+ 2
∣∣∣∣ ∂ϕ∂θi

∣∣∣∣ ∣∣∣∣ ∂ϕ∂θj
∣∣∣∣ (7.12)

multiplied by w(u, v). For α > 1, all these terms are integrable, so∫ +∞

−∞

∫ +∞

−∞
H2(u, v) du dv <∞ (7.13)

Therefore, the dominated convergence theorem applies for second derivatives, showing that (2.11) is C2(Θ)

for any α ∈ (1, 2) and appropriate exponential weights. This result is sufficient to prove that Assumption 3

holds.

7.1.4. Validation of Assumption 6

Having established the C2(Θ) regularity of the MDE objective function in Lemma 2.1, we now proceed

to verify that Assumption 6 holds for α-stable AR(1) aggregates under exponential weight regularization.

This assumption requires that the random sequence K(x; θ) defined in (2.14) is measurable and bounded.

From the C1(Θ) analysis in Lemma 2.1, the boundedness of K(x; θ) follows from the natural bounds of

trigonometric functions. Since | cos(uxj+1 + vxj)| ≤ 1 and | sin(uxj+1 + vxj)| ≤ 1 for all (u, v, x), we have:

|K(x; θ)| ≤
∫ ∞
−∞

∫ ∞
−∞

[
2
∣∣∣∣∂Re ϕ(u, v; θ)

∂θ

∣∣∣∣+ 2
∣∣∣∣∂Im ϕ(u, v; θ)

∂θ

∣∣∣∣]w(u, v) du dv

= 2
∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∂ϕ(u, v; θ)
∂θ

∣∣∣∣w(u, v) du dv =: C(θ) (7.14)

From Lemma 2.1, we established that for α > 1, the most critical terms satisfy∣∣∣∣ ∂ϕ∂ρk (u, v; θ)
∣∣∣∣ ≤ C1(θ)|ϕ(u, v; θ)|

[
|ρku+ v|α

δ
+ |u|α

]
where δ = infj,θ(1− |ρj |) > 0 and C1(θ) is a constant depending only on the parameter bounds. More gen-

erally, for each parameter component θi ∈ {σ, ρ1, . . . , ρJ , π1, . . . , πJ , α, β}, the derivative bounds established

in Lemma 2.1 ensure∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∂ϕ(u, v; θ)
∂θi

∣∣∣∣w(u, v) du dv ≤ Ci(θ) <∞

where Ci(θ) depends on the specific parameter and the bounds established for each case in the first-order

analysis. 2
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7.1.5. Validation of Assumption 7

Having established the C2(Θ) regularity of the MDE objective function in Lemma 2.1 and the uniform

boundedness of second derivatives, we now demonstrate that Assumption 7 holds for α > 1 and exponential

weights. The uniform boundedness condition follows directly from our second-order derivatives analysis.

From the explicit decomposition:

∂2ϕ

∂ρ2
k

=
(
∂ϕ

∂ρk

)
· παk

∂ logϕXk
∂ρk

+ ϕ(u, v; θ) · παk
∂2 logϕXk

∂ρ2
k

(7.15)

The first term contributes O(C2
ρ) where Cρ = σα(1+B tan(παmax/2)) from (7.1). The second term involves

the critical derivative ∂2

∂ρ2
k

|ρku + v|α = α(α − 1)u2|ρku + v|α−2, with asymmetry derivatives contributing

O
(

π2B
cos3(παmax/2)u|ρku+ v|α−2

)
. Therefore, the uniform bound constant is:

C2(θ) = παk σ
α

δ

[
α(α− 1) +O

(
σ2α

δ

)
+O

(
B2π2σα

δ cos3(παmax/2)

)]
(7.16)

For each parameter pair (θi, θj), we obtain explicit uniform constants:

Ckk(θ) = παk σ
α

δ

[
α(α− 1) +O(σ2α) +O

(
B2π2

cos3(παmax/2)

)]
(7.17)

Ck`(θ) = παk π
α
` σ

2α
[

1
δ2 +O

(
B tan(παmax/2)

δ

)]
(k 6= `) (7.18)

Cσσ(θ) = α2M2(α−1)J [1 +O(B tan(παmax/2))]2 (7.19)

Cπkπ`(θ) = α2πα−1
k πα−1

` M2α
[

1
δ2 +O(B2 tan2(παmax/2))

]
(7.20)

For any compact subset K ⊂ Θ with the established uniform bounds, these constants ensure:∣∣∣∣∂2ϕ(u, v; θ)
∂θi∂θj

∣∣∣∣ ≤ Cij(θ) ·Hij(u, v) (7.21)

where all Hij(u, v) are w-integrable for α > 1.

Let’s know proof the non-singularity of Σ(θ0), since ϕ(u, v; θ) is real-valued, the Fisher Information

Matrix is:

Σij(θ0) =
∫ +∞

−∞

∫ +∞

−∞

∂ϕ(u, v; θ0)
∂θi

∂ϕ(u, v; θ0)
∂θj

w(u, v) du dv (7.22)

To establish non-singularity, we show that for any non-zero vector c 6= 0:

cTΣ(θ0)c =
∫ +∞

−∞

∫ +∞

−∞

∣∣∣∣∣∑
k

ck
∂ϕ(u, v; θ0)

∂θk

∣∣∣∣∣
2

w(u, v) du dv > 0 (7.23)

From the aggregate structure ϕ(u, v; θ) =
∏J
j=1 πjϕXj (u, v; θ), we write:

∂ϕ

∂θk
(u, v; θ) = ϕ(u, v; θ) · gk(u, v; θ) (7.24)
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where gk(u, v; θ) = ∂ logϕ
∂θk

(u, v; θ) are the logarithmic derivatives established in our first-order analysis. The

condition reduces to proving linear independence:∑
k

ckgk(u, v; θ0) = 0 a.e. w.r.t. w(u, v)dudv ⇒ c = 0 (7.25)

The key insight is that each parameter class affects the characteristic function through fundamentally

different mechanisms: the AR parameters ρk create singularities along distinct lines ρku+ v = 0. From our

polar coordinate analysis, near each singularity line θ0 = arctan(−ρk):

gρk(u, v; θ) ∼ α|ρku+ v|α−1u

1− |ρk|α
(7.26)

These singularities have different orientations for different ρk values, while gσ, gπj , gα, and gβ remain

bounded near these lines. For large |(u, v)|, the established bounds reveal distinct growth patterns:

gσ(u, v; θ) ∼ −ασα−1
∑
j

παj |u|α (7.27)

gρk(u, v; θ) ∼ σαπαkα|ρk|α−1|ρku+ v|α

(1− |ρk|α)2 (7.28)

gπk(u, v; θ) ∼ απα−1
k σα

[
|ρku+ v|α

1− |ρk|α
+ |u|α

]
(7.29)

From our analysis of derivatives with respect to α, we have:

gα(u, v; θ) ∼ −σα
∑
j

παj |u|α ln |u| (7.30)

where the logarithmic terms create functional independence from polynomial growth. For the asymmetry

parameter, the established asymmetry term derivatives yield:

gβ(u, v; θ) ∼ iσα
∑
j

παj |u|α tan(πα/2) (7.31)

where the imaginary component ensures independence from real-valued functions.

Suppose
∑
k ckgk(u, v; θ0) = 0 almost everywhere. If any cρk 6= 0, the singularity structure along

ρku + v = 0 dominates locally, contradicting the zero combination since other functions remain bounded.

If cρk = 0 for all k but cα 6= 0, the logarithmic growth |u|α ln |u| in gα differs fundamentally from the

polynomial terms in gσ and gπk . If cρk = cα = 0 but cβ 6= 0, the imaginary structure in gβ ensures

independence from the remaining real-valued functions. The remaining case with only cσ and cπk non-zero

fails due to the different directional dependencies: gσ ∼ |u|α versus gπk ∼ |ρku+v|α+ |u|α. The exponential

weight w(u, v) = exp(−κ(u2 + v2)) assigns positive measure to every open set in R2. This ensures three

facts: first, all singularity lines ρku + v = 0 receive positive measure, second asymptotic behaviors as

|(u, v)| → ∞ contribute meaningfully and finnaly local functional differences are preserved in the L2 norm.

This functional independence is consistent with our identification analysis via the gn(λ) approach, where the
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ability to identify parameters from different λ values relies on the same orthogonality properties. Therefore,

Σ(θ0) is non-singular for α > 1, where the condition α > 1 ensures convergence of all defining integrals from

our integrability analysis.

7.1.6. Validation of Assumption 8

Having established the C2(Θ) regularity and the boundedness ofK(x; θ) in the verification of Assumption

6, we now demonstrate that Assumption 8 holds for α > 1 and exponential weights. The proof relies on

establishing the connection between empirical uncorrelatedness and α-mixing properties, which we detail

in the following steps. From Gouriéroux and Zakoian (2017), each non-causal α-stable AR(1) component

Xj,t = ρjXj,t+1 + εj,t with α ≥ 1 admits a weak causal linear representation:

Xj,t = ρjXj,t−1 + uj,t (7.32)

where the uj,t are “empirically uncorrelated” variables satisfying:

1
n

n∑
t=`+1

uj,tuj,t−`

/
1
n

n∑
t=1

u2
j,t → 0 in probability as n→∞ (7.33)

for any ` > 0. Unlike standard white noise where E[utut−`] = 0 exactly, here we only have asymptotic

sample uncorrelatedness. This weaker condition is sufficient for our purposes but requires careful analysis of

its implications. The empirical uncorrelatedness condition (7.33) implies that the sample autocovariances of

{uj,t} behave asymptotically like those of white noise. Specifically, for the process (7.32), we can establish:

Lemma 7.1. If Xj,t = ρjXj,t−1 + uj,t where {uj,t} satisfies (7.33) and |ρj | < 1, then:

γXj (`) = E[Xj,tXj,t−`] = O(|ρj |`) as `→∞

Proof: From the causal representation, we have:

Xj,t =
∞∑
k=0

ρkjuj,t−k

Therefore:

γXj (`) = E[Xj,tXj,t−`] (7.34)

= E

[( ∞∑
k=0

ρkjuj,t−k

)( ∞∑
m=0

ρmj uj,t−`−m

)]
(7.35)

=
∞∑
k=0

∞∑
m=0

ρk+m
j E[uj,t−kuj,t−`−m] (7.36)
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The empirical uncorrelatedness (7.33) implies that for large samples, E[uj,t−kuj,t−`−m] ≈ 0 unless k = m+`.

When k = m+ `:

γXj (`) ≈
∞∑
m=0

ρm+`+m
j σ2

u,j = ρ`j

∞∑
m=0

ρ2m
j σ2

u,j (7.37)

= ρ`j
σ2
u,j

1− ρ2
j

(7.38)

where σ2
u,j represents the “effective variance” of the uj,t process under the empirical uncorrelatedness as-

sumption. �

The geometric decay of autocovariances established in Lemma 7.1 directly implies α-mixing with geo-

metric rate. For a stationary process {Xj,t} with autocovariance function satisfying |γXj (`)| ≤ C|ρj |` for

some C > 0 and |ρj | < 1, the process is α-mixing with:

αXj (h) ≤ K|ρj |h

for some constant K > 0. The empirical uncorrelatedness (7.33), combined with the AR(1) structure and

|ρj | < 1, ensures that the asymptotic behavior mimics that of classical AR(1) processes, yielding geometric

decay of temporal dependence and consequently α-mixing with geometric rate |ρj |h. This follows from the

general principle in mixing theory (see e.g., Doukhan (1994)) that geometric decay of temporal dependence

implies geometric mixing rates, which applies to our setting due to the empirical uncorrelatedness property

combined with the AR(1) structure. While the classical results in Doukhan (1994) apply to Markov

processes with white noise innovations, the same geometric mixing conclusion holds in our case because

the empirical uncorrelatedness (7.33) provides sufficient asymptotic independence to preserve the geometric

decay structure inherent in AR(1) processes with |ρj | < 1.

Combining Lemma 7.1 with this α-mixing property, we obtain:

αXj (h) = O(|ρj |h)

For the aggregate process Xt = σ
∑J
j=1 πjXj,t, since the components Xj,t are independent across j:

αX (h) ≤ max
j=1,...,J

αXj (h) = O

(
max

j=1,...,J
|ρj |h

)
= O(ρ̄h) (7.39)

where ρ̄ = maxj=1,...,J |ρj | < 1.

We define the natural filtration Fj = σ(K0,K1, . . . ,Kj) whereKj = K(xj ; θ). Under exponential weights

with κ > 0 sufficiently large, the function K satisfies the Lipschitz property:

|K(x; θ)−K(x′; θ)| ≤ Lκ‖x− x′‖ (7.40)

where Lκ depends on κ and the parameter bounds, and decreases as κ increases.
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Combined with the geometric mixing of Xt, the Lipschitz property (7.40) implies that the K function

sequence inherits the mixing structure:

αK(h) ≤ Lκ · αX (h) = O(Lκρ̄h) (7.41)

Finally, we verify the conditions of Assumption 8.

First condition: The geometric α-mixing property (7.41) ensures that the martingale differences νj =

E[K0|Fj ]− E[K0|Fj−1] satisfy:

|νj | ≤ 2Lκρ̄jC(θ) (7.42)

where C(θ) is the bound from (7.14).

The geometric mixing immediately yields:

E[|E[K0|F−m]|2] ≤
(

2LκC(θ)ρ̄m+1

1− ρ̄

)2

→ 0 as m→∞ (7.43)

Second condition: The summability of martingale differences. The exponential decay of martingale

differences ensures:
∞∑
j=0

E[ν′jνj ]1/2 ≤
∞∑
j=0

2LκC(θ)ρ̄j = 2LκC(θ)
1− ρ̄ <∞ (7.44)

This demonstrates that Assumption 8 holds for α > 1 under appropriate exponential weight regulariza-

tion. �

7.2. Proof of Lemma 3.1

Denote Xj,t = (Xj,t−m, . . . , Xj,t, Xj,t+1, . . . , Xj,t+h) the paths of the moving averages (Xj,t), for j =

1, . . . , J . The Xj,t’s are independent α-stable random vectors with spectral representations (Γj ,µ0
j ). We

consider only the more delicate case α = 1 and βj ∈ [−1, 1] for j = 1, . . . , J . Because of the independence

between X1,t, . . . ,XJ,t, we have with a = 2/π

E
[
ei〈u,Xt〉

]
= E

[
e
i〈u,σ

∑J

j=1
πjXj,t〉

]
=

J∏
j=1

E
[
ei〈σπju,Xj,t〉

]

=
J∏
j=1

exp
{
−
∫
Sm+h+1

(
|〈σπju, s〉|+ ia〈σπju, s〉 ln |〈σπju, s〉|

)
Γj(ds) + i〈σπju,µj

0〉

}

= exp
{
−
∫
Sm+h+1

(
|〈u, s〉|+ ia〈u, s〉 ln |〈u, s〉|

) J∑
j=1

σαπαj Γj(ds)

+ i

J∑
j=1

(
〈u, σπjµj

0〉 − aσπj ln(σπj)
∫
Sm+h+1

〈u, s〉Γj(ds)
)}

.
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Focusing on the shift vector, we have
J∑
j=1

(
〈u, σπjµj

0〉 − aσπj ln(σπj)
∫
Sm+h+1

〈u, s〉Γj(ds)
)

= 〈u,
J∑
j=1

σπj(µ0
j − a ln(σπj)µ̃j)〉,

with µ̃j = (µ̃j,`) and µ̃j,` =
∫
Sm+h+1

s`Γj(ds), ` = −m, . . . , 0, 1, . . . , h. Using the form of Γj , i.e., Γj =∑
ϑ∈S1

∑
k∈Z wj,ϑ‖dj,k‖eδ{ ϑdj,k

|dj,k‖e

}, we get

µ̃j,` =
∫
Sm+h+1

s`Γj(ds) =
∑
ϑ∈S1

∑
k∈Z

wj,ϑ‖dj,k‖e
ϑdj,k+`

‖dj,k‖e
= βj

∑
k∈Z

dj,k+`, ` = −m, . . . , h.

Hence, µ̃j = βj
∑
k∈Z dj,k, and using the form of µ0

j as given in (3.5),

J∑
j=1

σπj(µ0
j − a ln(σπj)µ̃j) =

J∑
j=1

σπj

(
− aβj

∑
k∈Z

dj,k ln ‖dj,k‖e − a ln(σπj)βj
∑
k∈Z

dj,k

)

= −a
J∑
j=1

∑
k∈Z

σπjβjdj,k ln ‖σπjdj,k‖e

:= µ0.

Therefore,

E
[
ei〈u,Xt〉

]
= exp

{
−
∫
Sm+h+1

(
|〈u, s〉|+ ia〈u, s〉 ln |〈u, s〉|

) J∑
j=1

σαπαj Γj(ds) + i〈u,µ0〉

}
,

and the random vector Xt is 1-stable with spectral measure
J∑
j=1

σαπαj Γj = σα
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j ‖dj,k‖αe δ{ ϑdj,k

‖dj,k‖e

},
and shift vector as announced in the lemma.

7.3. Proof of Lemma 3.2

With the usual notations, let the Xj,t’s be the paths of the moving averages (Xj,t)’s and let Γj , j =

1, . . . , J , their spectral measures on the Euclidean unit sphere. Let Γ be the spectral measure of Xt. By

Lemma 3.1, we have:

Γ = σα
J∑
j=1

παj Γj .

Thus, by Proposition 1 of DFT, in the cases where either α 6= 1 or Xt is symmetric, the vector Xt is

representable on C‖·‖m+h+1 if and only if

Γ(K‖·‖) = 0 ⇐⇒ σα
J∑
j=1

παj Γj(K‖·‖) = 0

⇐⇒ Γj(K‖·‖) = 0, ∀ j = 1, . . . , J,
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where the last equivalence follows from the fact that σα > 0 and παj > 0 for all j = 1, . . . , J . Given that

the Γj ’s are the spectral measures of paths of non-aggregated moving averages, we can apply the arguments

from the proof of Theorem 1 in DFT. Specifically, for each j, the condition Γj(K‖·‖) = 0 is equivalent to

the representability condition (3.4) holding for the sequence (dj,k)k with parameter m. Therefore, Xt is

representable on C‖·‖m+h+1 if and only if (3.4) holds with m for all sequences (dj,k)k, j = 1, . . . , J . For the

case α = 1 and Xt asymmetric, we need to consider the additional condition involving the shift vector µ0.

From Lemma 3.1, we have:

µ0 = −1{α=1}
2σ
π

J∑
j=1

∑
k∈Z

πjβjdj,k ln ‖σπjdj,k‖e.

By Proposition 1 of DFT, when α = 1 and Xt is asymmetric, representability on C‖·‖m+h+1 requires both:

1. Γ(K‖·‖) = 0, which as shown above is equivalent to (3.4) holding for all sequences (dj,k)k;

2. The additional condition (3.6) must hold.

To verify condition (3.6), we need to show:∑
k∈Z
‖dk‖e

∣∣∣∣ ln(‖dk‖/‖dk‖e)∣∣∣∣ < +∞.

However, in the context of stable aggregates, this condition must be interpreted in terms of the aggregated

coefficients. SinceXt = σ
∑J
j=1 πjXj,t, the effective coefficients are combinations of the individual sequences

(dj,k)k. The condition (3.6) in the aggregated case becomes:∑
k∈Z
‖dk‖e

∣∣∣∣ ln(‖dk‖/‖dk‖e)∣∣∣∣ < +∞,

where dk now refers to the k-th vector in the aggregated representation. Given the linearity of the aggregation

and the fact that the condition must hold for each component individually (as each Xj,t must satisfy the

representability conditions), the condition (3.6) for the aggregate is satisfied if and only if it holds for all

sequences (dj,k)k, j = 1, . . . , J , with the same parameters m and h.

7.4. Proof of Proposition 3.1

If α 6= 1, we have by Theorem 1 and the proof of Proposition 3 of DFT,

(Xt) past-representable ⇐⇒ ∃ m ≥ 0, (3.4) holds with m for all sequences (dj,k)k

⇐⇒ ∀ j = 1, . . . , J, m0,j < +∞

⇐⇒ ∀ j = 1, . . . , J, (Xj,t) past-representable.

For a given series (dj,k)k, (3.4) holds with m ≥ m0,j and does not hold with m < m0,j . Regarding the last

statement, we know that for (Xt) (m,h)-past-representable, (3.4) holds with the samem for all the sequences
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(dj,k)k, j = 1, . . . , J . This holds if m ≥ max
j
m0,j and cannot hold if m < max

j
m0,j . In the case where

α = 1, again by Theorem 1 of DFT and denoting generically by Xt a vector (Xt−m, . . . ,Xt,Xt+1, . . . ,Xt+h)

of size m+ h+ 1,

Xt past-representable

⇐⇒ ∃ m ≥ 0, h ≥ 1,


Xt S1S and (3.4) holds with m for all sequences (dj,k)k
or

Xt asymmetric and (3.4)-(3.6) hold with m,h for all sequences (dj,k)k

⇐⇒ ∀ j = 1, . . . , J, m0,j < +∞, and ∃ m ≥ 0, h ≥ 1,



Xt S1S

or

Xt asymmetric and (3.6) hold

with m,h for all sequences (dj,k)k

We conclude again by noting that the necessary condition (3.4) holds for m ≥ max
j
m0,j and is violated

for m < max
j
m0,j . Now, for part (ιι), let ‖ · ‖ be a semi-norm satisfying (3.3) and assume that Xt is

(m,h)-past-representable for some m ≥ 0, h ≥ 1. We need to establish the spectral representation of

the vector Xt = (Xt−m, . . . ,Xt,Xt+1, . . . ,Xt+h) on C‖·‖m+h+1. From Lemma 3.1, we know that the spectral

representation (Γ,µ0) of Xt on the Euclidean unit sphere Sm+h+1 is given by:

Γ = σα
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j ‖dj,k‖αe δ{ ϑdj,k

‖dj,k‖e

} (7.45)

µ0 =

0, if α 6= 1

− 2σ
π

∑J
j=1

∑
k∈Z πjβjdj,k ln ‖σπjdj,k‖e, if α = 1

To obtain the spectral representation on C
‖·‖
m+h+1, we apply the transformation established in DFT for

changing from Euclidean to semi-norm representations. By Lemma 3.2, since Xt is (m,h)-past-representable,

the vector Xt is representable on C
‖·‖
m+h+1. The transformation from the Euclidean representation to the

semi-norm representation proceeds as follows. Let K‖·‖ := {s ∈ Sm+h+1 : ‖s‖ = 0} be the kernel of the

semi-norm on the Euclidean unit sphere. SinceXt is representable on C‖·‖m+h+1, we have Γ(K‖·‖) = 0. Define

the projection mapping T‖·‖ : Sm+h+1 \K‖·‖ → C
‖·‖
m+h+1 by:

T‖·‖(s) = s

‖s‖
(7.46)

By Proposition 2 of DFT, the spectral measure on the semi-norm unit cylinder is given by:

Γ‖·‖(A) =
∫
T−1
‖·‖(A)

‖s‖−αe Γ(ds) (7.47)
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for any Borel set A ⊂ C‖·‖m+h+1. Since the original spectral measure Γ from (7.45) is concentrated on atoms

of the form {ϑdj,k/‖dj,k‖e}, and since ‖ϑdj,k/‖dj,k‖e‖e = 1, the transformation yields:

Γ‖·‖(A) =
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j σ

α‖dj,k‖αe · 1−α · 1A
(
ϑdj,k
‖dj,k‖

)
(7.48)

where we use the fact that ‖ϑdj,k/‖dj,k‖e‖e = 1 and T‖·‖(ϑdj,k/‖dj,k‖e) = ϑdj,k/‖dj,k‖. Applying this

transformation to (7.45), we obtain:

Γ‖·‖ = σα
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j ‖dj,k‖αδ{ ϑdj,k

‖dj,k‖

} (7.49)

For the shift vector in the case α = 1, the transformation yields:

µ‖·‖ = −2σ
π

J∑
j=1

∑
k∈Z

πjβjdj,k ln ‖σπjdj,k‖ (7.50)

This completes the proof that the spectral representation (Γ‖·‖,µ‖·‖) of Xt on C
‖·‖
m+h+1 is given by (3.5)

with the Euclidean norm ‖ · ‖e replaced by the semi-norm ‖ · ‖, and with the scale parameter σ explicitly

included in all relevant terms.

7.5. Proof of Corollary 3.1

The equivalence between (ιι) and (ιιι) follows from Corollary 2 of DFT. From the proof of the Corollary in

DFT, we also know that, for any j, if m0,j < +∞, then (3.6) holds for the sequence (dj,k)k for any m ≥ m0,j .

For the aggregated process Xt = σ
∑J
j=1 πjXj,t with σ > 0, the effective moving average coefficients for each

component j become σπjdj,k rather than dj,k. However, the past-representability conditions depend only

on the pattern of zeros and non-zeros in the coefficient sequences, not on their scaling. Specifically, for

condition (3.4), we require:

∀k ∈ Z,
[
(σπjdj,k+m, . . . , σπjdj,k) = 0 =⇒ ∀` ≤ k − 1, σπjdj,` = 0

]
.

Since σ > 0 and πj > 0 for all j, this is equivalent to:

∀k ∈ Z,
[
(dj,k+m, . . . , dj,k) = 0 =⇒ ∀` ≤ k − 1, dj,` = 0

]
.

Thus, the past-representability condition for the aggregated process is unchanged by the scaling factor σ.

For the additional condition (3.6) when α = 1 and the process is asymmetric, we need:∑
k∈Z
‖σπjdj,k‖e

∣∣∣∣ ln(‖σπjdj,k‖/‖σπjdj,k‖e)∣∣∣∣ < +∞.

Since ‖σπjdj,k‖e = σπj‖dj,k‖e and the norm scales homogeneously, this becomes:∑
k∈Z

σπj‖dj,k‖e
∣∣∣∣ ln(‖dj,k‖/‖dj,k‖e)∣∣∣∣ < +∞.
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Since σπj > 0 is a finite constant, this condition is equivalent to:∑
k∈Z
‖dj,k‖e

∣∣∣∣ ln(‖dj,k‖/‖dj,k‖e)∣∣∣∣ < +∞,

which is precisely condition (3.6) for the unscaled sequences. Therefore:

sup
j
m0,j < +∞ =⇒ (3.6) holds for any sequence (dj,k)k for any m ≥ m0,j

=⇒ (3.6) holds for any sequence (σπjdj,k)k for any m ≥ max
j
m0,j .

Thus, (ιιι) implies (ι). The reciprocal is clear. Regarding the last statement, notice that if Xt is (m,h)-

past-representable for some m < max
j
m0,j , there would then exist some j such that m < m0,j . Hence, (3.4)

would not hold with m for the particular sequence (σπjdj,k)k, which is impossible by Lemma 3.2, since the

past-representability depends only on the zero pattern, not the scaling.

7.6. Proof of Proposition 3.2

By Proposition 2 of DFT, the asymptotic conditional tail property states that for any Borel sets A,B ⊂

C
‖·‖
m+h+1 with Γ‖·‖

(
∂(A ∩B)

)
= Γ‖·‖

(
∂B
)

= 0, and Γ‖·‖(B) > 0,

P‖·‖x (Xt, A|B) −→
x→+∞

Γ‖·‖(A ∩B)
Γ‖·‖(B)

.

Setting B = B(V ) = V × Rh, we have

P‖·‖x
(
Xt, A

∣∣∣B(V )
)
−→
x→+∞

Γ‖·‖(A ∩B(V ))
Γ‖·‖(B(V ))

.

From Proposition 3.1 (ιι), the spectral representation (Γ‖·‖,µ‖·‖) of the vector Xt =

(Xt−m, . . . ,Xt,Xt+1, . . . ,Xt+h) on C
‖·‖
m+h+1 is given by equation (3.5) with the Euclidean norm ‖ · ‖e

replaced by the semi-norm ‖ · ‖. From Lemma 3.1, the spectral measure can be written as:

Γ‖·‖ = σα
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j ‖dj,k‖αδ{ ϑdj,k

‖dj,k‖

},
where dj,k = (dj,k+m, . . . , dj,k, dj,k−1, . . . , dj,k−h), wj,ϑ = (1 + ϑβj)/2, and if dj,k = 0, the term vanishes by

convention from the sums.

Now, we compute the numerator and denominator separately, we start by the numerator: Γ‖·‖(A∩B(V ))

Since B(V ) = V × Rh =
{
s ∈ C‖·‖m+h+1 : f(s) ∈ V

}
, we have:

A ∩B(V ) = {s ∈ A : f(s) ∈ V } .
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The spectral measure Γ‖·‖ charges only the points of the form ϑdj,k
‖dj,k‖

for (ϑ, j, k) ∈ S1 × {1, . . . , J} × Z.

Therefore:

Γ‖·‖(A ∩B(V )) = σα
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑπ
α
j ‖dj,k‖αδ{ ϑdj,k

‖dj,k‖

}(A ∩B(V ))

= σα
∑

(ϑ,j,k):
ϑdj,k
‖dj,k‖

∈A∩B(V )

wj,ϑπ
α
j ‖dj,k‖α

= σα
∑

(ϑ,j,k):
ϑdj,k
‖dj,k‖

∈A and
ϑf(dj,k)
‖dj,k‖

∈V

wj,ϑπ
α
j ‖dj,k‖α.

This can be written as:

Γ‖·‖(A ∩B(V )) = Γ‖·‖
({

ϑdj,k
‖dj,k‖

∈ A : ϑf(dj,k)
‖dj,k‖

∈ V
})

.

For the denominator Γ‖·‖(B(V )), we proceed as follows:

Γ‖·‖(B(V )) = σα
∑

(ϑ,j,k):
ϑdj,k
‖dj,k‖

∈B(V )

wj,ϑπ
α
j ‖dj,k‖α

= σα
∑

(ϑ,j,k):
ϑf(dj,k)
‖dj,k‖

∈V

wj,ϑπ
α
j ‖dj,k‖α.

This can be written as:

Γ‖·‖(B(V )) = Γ‖·‖
({

ϑdj,k
‖dj,k‖

∈ C‖·‖m+h+1 : ϑf(dj,k)
‖dj,k‖

∈ V
})

.

Note that the factor σα appears in both the numerator and denominator, and therefore cancels out in the

ratio:

Γ‖·‖(A ∩B(V ))
Γ‖·‖(B(V ))

=

σα
∑

(ϑ,j,k):
ϑdj,k
‖dj,k‖

∈A and
ϑf(dj,k)
‖dj,k‖

∈V

wj,ϑπ
α
j ‖dj,k‖α

σα
∑

(ϑ,j,k):
ϑf(dj,k)
‖dj,k‖

∈V

wj,ϑπαj ‖dj,k‖α

=
Γ‖·‖

({
ϑdj,k
‖dj,k‖

∈ A : ϑf(dj,k)
‖dj,k‖

∈ V
})

Γ‖·‖
({

ϑdj,k
‖dj,k‖

∈ C‖·‖m+h+1 : ϑf(dj,k)
‖dj,k‖

∈ V
}) .

This establishes the desired result. The conclusion follows by considering the points of B(V ) and A ∩

B(V ) that are charged by the spectral measure Γ‖·‖ given in equation (3.13). The presence of the scale

parameter σα does not affect the asymptotic conditional probabilities as it appears multiplicatively in both

the numerator and denominator of the ratio, thus canceling out in the final expression.
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7.7. Proof of Lemma 3.3

By Proposition 3.1 and setting general scale parameter σ > 0, we have

Γ‖·‖ =
J∑
j=1

∑
ϑ∈S1

∑
k∈Z

wj,ϑσ
απαj ‖dj,k‖αδ{ ϑdj,k

‖dj,k‖

},
with dj,k = (ρk+m

j 1{k+m≥0}, . . . , ρ
k−h
j 1{k−h≥0}) for any j = 1, . . . , J and k ∈ Z. Thus, for any j ∈ {1, . . . , J}

dj,k =


0, if k ≤ −m− 1,

(ρk+m
j , . . . , ρj , 1, 0, . . . , 0), if −m ≤ k ≤ h,

ρk−hj dj,h, if k ≥ h.

Therefore,

Γ‖·‖ =
J∑
j=1

∑
ϑ∈S1

wj,ϑσ
απαj

[
h−1∑
k=−m

‖dj,k‖αδ{ ϑdj,k
‖dj,k‖

} +
+∞∑
k=h
|ρj |α(k−h)‖dj,h‖αδ{ ϑρ

k−h
j

dj,h

|ρj |k−h‖dj,h‖

}].
Moreover,

J∑
j=1

∑
ϑ∈S1

wj,ϑσ
απαj

+∞∑
k=h
|ρj |α(k−h)‖dj,h‖αδ{

sign(ρj)k−h
ϑdj,h
‖dj,h‖

}
=

J∑
j=1

∑
ϑ∈S1

σαπαj ‖dj,h‖α
1
2

[ +∞∑
k=h
|ρj |α(k−h) + ϑβj

+∞∑
k=h

(ρ<α>j )k−h
]
δ{ ϑdj,h
‖dj,h‖

}
=

J∑
j=1

∑
ϑ∈S1

σαπαj
1

1− |ρj |α
‖dj,h‖αw̄j,ϑδ{ ϑdj,h

‖dj,h‖

}.
Finally, noticing that for k = −m and any j ∈ {1, . . . , J}, dj,k = (1, 0, . . . , 0),

Γ‖·‖ =
J∑
j=1

∑
ϑ∈S1

σαπαj

[
wj,ϑ

h−1∑
k=−m

‖dj,k‖αδ{ ϑdj,k
‖dj,k‖

} + w̄j,ϑ
1− |ρj |α

‖dj,h‖αδ{ ϑdj,h
‖dj,h‖

}]

=
J∑
j=1

∑
ϑ∈S1

σαπαj

[
wj,ϑ

(
δ{(ϑ,0,...,0)} +

h−1∑
k=−m+1

‖dj,k‖αδ{ ϑdj,k
‖dj,k‖

})+ w̄j,ϑ
1− |ρj |α

‖dj,h‖αδ{ ϑdj,h
‖dj,h‖

}]

=
∑
ϑ∈S1

[
wϑδ{(ϑ,0,...,0)} +

J∑
j=1

σαπαj

(
wj,ϑ

h−1∑
k=−m+1

‖dj,k‖αδ{ ϑdj,k
‖dj,k‖

} + w̄j,ϑ
1− |ρj |α

‖dj,h‖αδ{ ϑdj,h
‖dj,h‖

})],
where we have used the definition wϑ =

∑J
j=1 σ

απαj wj,ϑ.

7.8. Proof of Proposition 3.3

Lemma 7.2. Let Γ‖·‖ be the spectral measure given in Lemma 3.3 with σ > 0 and assume that the ρj’s are

all positive. Letting (ϑ0, j0, k0) ∈ I, consider

I0 :=
{
ϑ′dj′,k′

‖dj′,k′‖
: ϑ′f(dj′,k′)

‖dj′,k′‖
= ϑ0f(dj0,k0)
‖dj0,k0‖

for (ϑ′, j′, k′) ∈ I
}
.
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For m ≥ 1, and 0 ≤ k0 ≤ h, then

I0 =
{
ϑ0dj0,k′

‖dj0,k′‖
: 0 ≤ k′ ≤ h

}
.

For m ≥ 1, and −m ≤ k0 ≤ −1, then

I0 =



{
ϑ0dj0,k0

‖dj0,k0‖

}
, if −m+ 1 ≤ k0 ≤ −1

{
ϑ0d0,k0

‖d0,k0‖

}
= {(ϑ0, 0, . . . , 0)} , if k0 = −m.

For m = 0, then

I0 =
{
ϑ0dj′,k′

‖dj′,k′‖
: (j′, k′) ∈ {1, . . . , J} × {1, . . . , h} ∪ {(0, 0)}

}
.

Proof. The key observation is that the parameter σ > 0 appears as a multiplicative factor in the

spectral measure Γ‖·‖ but does not affect the normalized directions ϑ′dj′,k′/‖dj′,k′‖ or their projections

ϑ′f(dj′,k′)/‖dj′,k′‖. This is because σ only scales the overall magnitude of the spectral measure but does

not change the geometric structure of the charged points on the unit cylinder. More precisely, from Lemma

3.3, the spectral measure takes the form:

Γ‖·‖ = σα
∑
ϑ∈S1

[
wϑδ{(ϑ,0,...,0)} +

J∑
j=1

παj

(
wj,ϑ

h−1∑
k=−m+1

‖dj,k‖αδ{ ϑdj,k
‖dj,k‖

} + w̄j,ϑ
1− |ρj |α

‖dj,h‖αδ{ ϑdj,h
‖dj,h‖

})],
The factor σα multiplies the entire spectral measure uniformly, but the support of Γ‖·‖ (i.e., the set of points

where Γ‖·‖ assigns positive mass) consists exactly of the normalized directions:

supp(Γ‖·‖) =
{

(ϑ, 0, . . . , 0), ϑdj,k
‖dj,k‖

: ϑ ∈ S1, j ∈ {1, . . . , J}, k ∈ {−m+ 1, . . . , h}
}

Since the condition defining I0 involves only the equality of normalized projections:

ϑ′f(dj′,k′)
‖dj′,k′‖

= ϑ0f(dj0,k0)
‖dj0,k0‖

and since these normalized directions are independent of σ, the analysis proceeds exactly as in the case

σ = 1.

Case m ≥ 1 and k0 ∈ {0, . . . , h}

If k′ ∈ {−m, . . . ,−1}, the (m+ 1)-th component of f(dj′,k′) is zero, whereas the (m+ 1)-th component

of f(dj0,k0) is ρk0
j0
6= 0. This geometric relationship is unaffected by σ.

Necessarily, ϑ′f(dj′,k′)/‖dj′,k′‖ 6= ϑ0f(dj0,k0)/‖dj0,k0‖ and

I0 =
{
ϑ′dj′,k′

‖dj′,k′‖
: ϑ′f(dj′,k′)

‖dj′,k′‖
= ϑ0f(dj0,k0)
‖dj0,k0‖

for (ϑ′, j′, k′) ∈ {−1,+1} × {1, . . . , J} × {0, . . . , h}
}
.
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Now, with k′ ∈ {0, . . . , h}, we have that

f(dj′,k′) = (ρk
′+m
j′ , . . . , ρk

′+1
j′ , ρk

′

j′ ),

f(dj0,k0) = (ρk0+m
j0

, . . . , ρk0+1
j0

, ρk0
j0

),

and by (3.3) we also have that

‖dj′,k′‖ = ‖(ρk
′+m
j′ , . . . , ρk

′+1
j′ , ρk

′

j′ ,

h︷ ︸︸ ︷
0, . . . , 0)‖,

‖dj0,k0‖ = ‖(ρk0+m
j0

, . . . , ρk0+1
j0

, ρk0
j0
, 0, . . . , 0︸ ︷︷ ︸

h

)‖.

The key observation is that these norms and the resulting normalized directions are independent of σ.

Thus,

ϑ′f(dj′,k′)
‖dj′,k′‖

= ϑ0f(dj0,k0)
‖dj0,k0‖

⇐⇒
ϑ′ρk

′

j′ f (dj′,0)
|ρj′ |k′‖dj′,0‖

=
ϑ0ρ

k0
j0
f (dj0,0)

|ρj0 |k0‖dj0,0‖

⇐⇒
ϑ′ρ`j′

‖dj′,0‖
=

ϑ0ρ
`
j0

‖dj0,0‖
, ` = 0, . . . ,m

⇐⇒ ϑ′ϑ0
‖dj0,0‖
‖dj′,0‖

=
(
ρj0

ρj′

)`
, ` = 0, . . . ,m

⇐⇒ ρj′ = ρj0 and ϑ′ϑ0 = 1

⇐⇒ j′ = j0 and ϑ′ = ϑ0,

because the ρj ’s are assumed to be non-zero and distinct.

Case m ≥ 1 and k0 ∈ {−m, . . . ,−1}

By comparing the place of the first zero component, it is easy to see that

ϑ′f(dj′,k′)
‖dj′,k′‖

= ϑ0f(dj0,k0)
‖dj0,k0‖

=⇒ k′ = k0.

f(dj′,k′) = (

m+1︷ ︸︸ ︷
ρk
′+m
j′ , . . . , ρj′ , 1, 0, . . . , 0),

f(dj0,k0) = (ρk0+m
j0

, . . . , ρj0 , 1, 0, . . . , 0︸ ︷︷ ︸
m+1

),

and we also have that

‖dj′,k′‖ = ‖(

m+1︷ ︸︸ ︷
ρk
′+m
j′ , . . . , ρj′ , 1, 0, . . . , 0,

h︷ ︸︸ ︷
0, . . . , 0)‖,

‖dj0,k0‖ = ‖(ρk0+m
j0

, . . . , ρj0 , 1, 0, . . . , 0︸ ︷︷ ︸
m+1

, 0, . . . , 0︸ ︷︷ ︸
h

)‖.
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As k′ = k0 ≤ −1, the condition becomes:

ϑ′f(dj′,k′)
‖dj′,k′‖

= ϑ0f(dj0,k0)
‖dj0,k0‖

⇐⇒
ϑ′ρ`j′

‖dj′,k0‖
=

ϑ0ρ
`
j0

‖dj0,k0‖
, ` = 0, . . . ,m+ k0, and k′ = k0

⇐⇒ ϑ′ϑ0
‖dj0,k0‖
‖dj′,k0‖

=
(
ρj0

ρj′

)`
, ` = 0, . . . ,m+ k0, and k′ = k0.

Now if −m+ 1 ≤ k0 ≤ −1,

ϑ′ϑ0
‖dj0,k0‖
‖dj′,k0‖

=
(
ρj0

ρj′

)`
, ` = 0, 1, . . . ,m+ k0, and k′ = k0

⇐⇒ ϑ′ = ϑ0 and j′ = j0 and k′ = k0.

If k0 = −m, given that (ϑ0, j0, k0) ∈ I = S1 ×
(
{1, . . . , J} × {−m, . . . ,−1, 0, 1, . . . , h} ∪ {(0,−m)}

)
,

then necessarily j0 = 0. Furthermore, as k′ = k0 = −m, we similarly have that j′ = j0 = 0 and thus

dj′,k0 = dj0,k0 = d0,−m = (1, 0, . . . , 0).

Hence

ϑ′ϑ0
‖dj0,k0‖
‖dj′,k0‖

=
(
ρj0

ρj′

)`
, ` = 0, and k′ = k0 = −m and j′ = j0 = 0,

⇐⇒ ϑ′ = ϑ0 and k′ = k0 = −m and j′ = j0 = 0

Case m = 0

If k0 ∈ {1, . . . , h} then f(dj0,k0) = ρk0
j0

and by (3.3), ‖dj0,k0‖ = |ρj0 |k0 . Thus, ϑ0f(dj0,k0)/‖dj0,k0‖ = ϑ0.

If k0 = −m = 0, then j0 = 0 and f(dj0,k0) = 1 and ϑ0f(dj0,k0)/‖dj0,k0‖ = ϑ0.

The same holds for (ϑ′, j′, k′) ∈ I and we obtain that

ϑ′f(dj′,k′)
‖dj′,k′‖

= ϑ0f(dj0,k0)
‖dj0,k0‖

⇐⇒ ϑ′ = ϑ0.

Proof. By Proposition 3.2,

P‖·‖x
(
Xt, Aϑ,j,k

∣∣∣B(V0)
)
−→
x→∞

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ Aϑ,j,k : ϑ′f(dj′,k′)

‖dj′,k′‖
∈ V0

})

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : ϑ′f(dj′,k′)

‖dj′,k′‖
∈ V0

}) . (7.51)

Focusing on the denominator, we have by (3.16)

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : ϑ′f(dj′,k′)

‖dj′,k′‖
∈ V0

})
= Γ‖·‖

({
ϑ′dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : ϑ′f(dj′,k′)

‖dj′,k′‖
= ϑ0f(dj0,k0)
‖dj0,k0‖

})
We will now distinguish the cases arising from the application of Lemma 7.2. Recall that we assume for

this proposition that the ρj ’s are positive. Thus, sign(ρj) = 1 and β̄j = βj
1− |ρj |α

1− ρ<α>j

= βj and w̄j,ϑ = wj,ϑ

in (3.15) for all j’s and ϑ ∈ {−1,+1}.
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Case m ≥ 1 and 0 ≤ k0 ≤ h

By Lemma 7.2,

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : ϑ′f(dj′,k′)

‖dj′,k′‖
= ϑ0f(dj0,k0)
‖dj0,k0‖

})

= Γ‖·‖
({

ϑ0dj0,k′

‖dj0,k′‖
: 0 ≤ k′ ≤ h

})

= σαπαj0

[
wj0,ϑ0

h−1∑
k′=0
‖dj0,k′‖α + w̄j0,ϑ0

1− |ρj0 |α
‖dj0,h‖α

]

By (3.3), for k′ ∈ {0, 1, . . . , h}

‖dj0,k′‖ = ‖(ρk
′+m
j0

, . . . , ρk
′+1
j0

, ρk
′

j0
, 0, . . . , 0︸ ︷︷ ︸

h

)‖

= |ρj0 |k
′−h‖(ρm+h

j0
, . . . , ρh+1

j0
, ρhj0

, 0, . . . , 0︸ ︷︷ ︸
h

)‖

= |ρj0 |k
′−h‖dj0,h‖.

Thus,

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : ϑ′f(dj′,k′)

‖dj′,k′‖
= ϑ0f(dj0,k0)
‖dj0,k0‖

})

= σαπαj0
wj0,ϑ0‖dj0,h‖α

[
h−1∑
k′=0
|ρj0 |α(k′−h) + 1

1− |ρj0 |α

]

= σαπαj0
wj0,ϑ0‖dj0,h‖α

|ρj0 |−αh

1− |ρj0 |α
.

Similarly for the numerator in (7.51), by (3.17),

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ Aϑ,j,k : ϑ′f(dj′,k′)

‖dj′,k′‖
∈ V0

})

= Γ‖·‖
({

ϑ0dj0,k′

‖dj0,k′‖
∈ Aϑ,j,k : 0 ≤ k′ ≤ h

})

=


Γ‖·‖

({
ϑ0dj0,k

‖dj0,k‖

})
, if j = j0 and ϑ = ϑ0,

Γ‖·‖(∅), if j 6= j0 or ϑ 6= ϑ0,

=


σαπαj0

wj0,ϑ0‖dj0,h‖α|ρj0 |α(k−h)δ{ϑ0}(ϑ)δ{j0}(j), if 0 ≤ k ≤ h− 1,

σαπαj0
wj0,ϑ0‖dj0,h‖α

1
1− |ρj0 |α

δ{ϑ0}(ϑ)δ{j0}(j), if k = h.
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The σα terms cancel out in the ratio.

Case m ≥ 1 and −m ≤ k0 ≤ −1

We have by Lemma 7.2

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : ϑ′f(dj′,k′)

‖dj′,k′‖
= ϑ0f(dj0,k0)
‖dj0,k0‖

})
= Γ‖·‖

({
ϑ0dj0,k0

‖dj0,k0‖

})
.

If −m+ 1 ≤ k0 ≤ −1,

Γ‖·‖
({

ϑ0dj0,k0

‖dj0,k0‖

})
= σαπαj0

wj0,ϑ0‖dj0,k0‖α,

and

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ Aϑ,j,k : ϑ′f(dj′,k′)

‖dj′,k′‖
∈ V0

})

= Γ‖·‖
(
Aϑ,j,k ∩

{
ϑ0dj0,k0

‖dj0,k0‖

})

=


Γ‖·‖

({
ϑ0dj0,k0

‖dj0,k0‖

})
, if j = j0 and ϑ = ϑ0, and k = k0,

Γ‖·‖(∅), if j 6= j0 or ϑ 6= ϑ0 or k 6= k0,

= σαπαj0
wj0,ϑ0‖dj0,k0‖αδ{ϑ0}(ϑ)δ{j0}(j)δ{k0}(k).

If k0 = −m, then dj0,k0 = d0,−m = (1, 0, . . . , 0), and

Γ‖·‖
({

ϑ0dj0,k0

‖dj0,k0‖

})
= Γ‖·‖

(
{ϑ0(1, 0, . . . , 0)}

)
= σαwϑ0 ,

and

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ Aϑ,j,k : ϑ′f(dj′,k′)

‖dj′,k′‖
∈ V0

})

= Γ‖·‖
(
Aϑ,j,k ∩

{
ϑ0dj0,k0

‖dj0,k0‖

})

=

 Γ‖·‖
(
Aϑ,j,k ∩ {ϑ0(1, 0, . . . , 0)}

)
, if ϑ = ϑ0, and k = k0 = −m, and j = j0 = 0

Γ‖·‖(∅), if ϑ 6= ϑ0 or k 6= k0, or j 6= j0

= σαwϑ0δ{ϑ0}(ϑ)δ{j0}(j)δ{k0}(k).
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Again, the σα terms cancel out in the ratio.

Case m = 0

By Lemma 7.2, as the ρj ’s are positive

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : ϑ′f(dj′,k′)

‖dj′,k′‖
= ϑ0f(dj0,k0)
‖dj0,k0‖

})

= Γ‖·‖
({

ϑ0dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : (j′, k′) ∈ {1, . . . , J} × {0, . . . , h} ∪ {(0, 0)}

})

Given that wϑ0 =
∑J
j′=1 π

α
j′wj′,ϑ0 and ‖dj′,k′‖ = |ρj′ |k

′ , for any 1 ≤ j′ ≤ J , 1 ≤ k′ ≤ h,

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : ϑ′f(dj′,k′)

‖dj′,k′‖
= ϑ0f(dj0,k0)
‖dj0,k0‖

})

= σαwϑ0 + σα
J∑

j′=1
παj′wj′,ϑ0

[
h−1∑
k′=1
‖dj′,k′‖α + ‖dj′,h‖α

1− |ρj′ |α

]

= σα
J∑

j′=1
παj′wj′,ϑ0

[
1 +

h−1∑
k′=1
|ρj′ |αk

′
+ |ρj′ |αh

1− |ρj′ |α

]

= σα
J∑

j′=1
παj′wj′,ϑ0

[
1− |ρj′ |αh

1− |ρj′ |α
+ |ρj′ |αh

1− |ρj′ |α

]

= σα
J∑

j′=1
παj′wj′,ϑ0

1
1− |ρj′ |α

.

Similarly, by (3.17),

Γ‖·‖
({

ϑ′dj′,k′

‖dj′,k′‖
∈ Aϑ,j,k : ϑ′f(dj′,k′)

‖dj′,k′‖
∈ V0

})

= Γ‖·‖
(
Aϑ,j,k ∩

{
ϑ0dj′,k′

‖dj′,k′‖
∈ C‖·‖m+h+1 : (j′, k′) ∈ {1, . . . , J} × {0, . . . , h} ∪ {(0, 0)}

})

=


Γ‖·‖

({
ϑ0dj,k
‖dj,k‖

})
, if ϑ = ϑ0,

Γ‖·‖(∅), if ϑ 6= ϑ0,

=


σα
∑J
j′=1 π

α
j′wj′,ϑ0δ{ϑ0}(ϑ), if k = 0,

σαπαj wj,ϑ0 |ρj |αkδ{ϑ0}(ϑ), if 1 ≤ k ≤ h− 1,

σαπαj wj,ϑ0

|ρj |αh

1− |ρj |α
δ{ϑ0}(ϑ), if k = h.

The conclusion follows.
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