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Abstract

Financial markets frequently exhibit dramatic episodes where asset prices undergo rapid growth followed by
abrupt collapses, that are incompatible with standard linear time series models. While anticipative heavy-
tailed linear processes offer a promising alternative for modeling such phenomena, they impose uniform
bubble patterns across different episodes, contradicting empirical evidence. This paper introduces a new
model, based on a-stable moving average aggregates, that accommodates heterogeneous bubble dynamics.
We establish the theoretical properties of this model, demonstrating that it admits a semi-norm repre-
sentation on a unit cylinder, thereby enabling the prediction of extreme trajectories with varying growth
dynamics. We develop a minimum distance estimation procedure based on the joint characteristic function
and establish its asymptotic properties. Monte Carlo simulations confirm the estimator’s good finite-sample
performance across various specifications. Our empirical application to the CBOE Crude Oil ETF Volatility
Index successfully decomposes observed volatility dynamics into distinct components with different per-
sistence properties, revealing that what appears as a single bubble episode actually consists of multiple
superimposed processes with heterogeneous growth rates and crash probabilities.
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1. Introduction

Financial markets regularly witness dramatic episodes where asset prices undergo rapid growth followed
by abrupt collapses. These phenomena, termed rational asset pricing bubbles when they diverge from funda-
mental values (Blanchard and Watson , 1982; Tirole , 1985), have become increasingly prominent alongside
well-documented features such as heavy-tailed distributions and volatility clustering. These bubbles emerge
as solutions to linear rational expectation models that admit multiple stationary equilibria through infinite
variance innovations (Gouriéroux et al. , 2020). Another theoretical paper that provides justification for
bubbles having different growth rates is Lux and Sornette (2002), which demonstrates how agent inter-
actions can create bubble formation, with bubbles growing in seemingly rational ways driven by investor
expectations. Their model effectively captures sudden dramatic crashes and replicates the “fat tails” ob-
served in empirical financial market data, suggesting that traditional representative rational agent models
inadequately explain these phenomena.

From an empirical perspective, so-called mixed-causal (or anticipative) models appear as good candidates
to account for the non-linear dynamics of bubbles and the non-Gaussian environment characterized by Lux
and Sornette (2002) and Gouriéroux et al. (2020). Indeed, future-oriented models may generate intermittent
periods of explosive growth and relative stability within a stationary linear framework while also admitting
a regular time representation involving non-linear dynamics or non-i.i.d. innovations. Among others, we can
mention (Andrews et al. , 2009; Lanne and Saikkonen , 2011, 2013; Hecq et al. , 2016, 2017; Cavaliere et al. |
2020; Velasco and Lobato , 2018; Fries and Zakoian , 2019; Hecq et al. , 2020; Gouriéroux and Jasiak , 2016,
2018; Gourieroux and Jasiak , 2023; Hecq and Velasquez-Gaviria , 2025; Gouriéroux et al. , 2025). Most
importantly, this framework exhibits intriguing properties, such as a predictive distribution with lighter tails
than the marginal distribution. This enables more accurate predictions of higher-order moments (see e.g.
Fries , 2022) and forecasts based on pattern recognition (see de Truchis et al. , 2025a), which are critical
for informed investment decisions. As emphasized by Gouriéroux et al. (2020), this framework offers a
robust approach to modeling bubble dynamics as it relaxes the finite variance constraint while maintaining
stationarity.

However, anticipative models impose a similar increase rate for all bubbles, fully determined by the non-
causal autoregressive coefficients (Gouriéroux and Zakoian , 2017). This lack of flexibility might conflicts
with empirical evidence on financial markets where the surge of explosive episodes can exhibit very different
pattern. Moreover, Gouriéroux et al. (2021) recall that aggregation implies various sources of noise and
is hence very different from mixed-causal AR processes and more generally, different from any two-sided
moving average. As it incorporates independent unobservable stochastic factors aggregation it is more
suitable for financial applications. For instance, if one want to build derivatives to hedge portfolios against

the uncertainty associated with the anticipative components and the risk of sudden bubble crashes, the two



factor of risk should be priced and accounted for in the derivatives.

In this paper, we make two contributions to the literature on econometric modeling of financial bubbles.
First, we introduce a novel flexible framework that overcomes a key limitation of existing anticipative
heavy-tailed models, which impose uniform growth patterns across different bubble episodes. Our approach
allows for diverse bubble dynamics by aggregating multiple latent components, each with distinct stochastic
properties. We derive the theoretical tail properties of this model and demonstrate that, similarly to non-
aggregated processes (de Truchis et al. , 2025a), it admits a semi-norm representation on a unit cylinder,
expect if one of the underling component is purely non-anticipative, thereby enabling the prediction of
extreme trajectories with heterogeneous growth patterns.

Second, we develop an inference procedure for anticipative stable aggregates, departing from Gouriéroux
and Zakoian (2017) and building upon Knight and Yu (2002). While Gouriéroux and Zakoian (2017) focus
on continuous support distributions for the aggregation weights in the specific case of anticipative Cauchy
AR(1) processes, our approach extends to the general a-stable case with discrete support, a framework
more suitable for empirical applications. We propose a deconvolution minimum distance estimator based on
the joint characteristic function that effectively identifies the model parameters. Our methodology draws
from Knight and Yu (2002) and Xu and Knight (2010), who developed asymptotic theory for minimum
distance estimation using the empirical characteristic function in stationary time series, but we extend their
approach to handle the heavy-tailed stable distributions. We establish the asymptotic properties of our
estimator under suitable regularity conditions, proving consistency and asymptotic normality.

As an empirical illustration, we estimate an aggregation of purely anticipative stable AR(1) processes
using the CBOE Crude Oil ETF Volatility Index (OVX) data, and we demonstrate that the observed
volatility patterns can be effectively decomposed into multiple latent stable components with heterogeneous
persistence properties. The empirical analysis reveals that what initially appears as a single explosive
episode actually consists of several superimposed processes with distinct autoregressive parameters and
crash probabilities.

The Section 2 introduces the stable aggregates model and suggests a new minimum distance estimator
base on the characteristic functions of the unobserved latent components. Section 3 extends the represen-
tation theorem of de Truchis et al. (2025a) to stable aggregates and theoretically derive the conditions
under which the forecast of a stable aggregate is possible. The finite sample performance of the minimum
estimator are documented in Section 4 and an application to the CBOE Crude Oil ETF Volatility Index is

proposed in Section 5. Section 6 concludes and all proofs are postponed in the Appendix A.



2. Estimating stable-aggregate of moving average

Consider X; an a-stable moving average defined by

X, = Z dkEirr, = S S(a, B,0,0) (2.1)
kEZ

with dg > 0, (dj) a real deterministic sequence such that if a # 1 or (o, 8) = (1,0),

Z |di|® < 400, for some s € (0,a)N]0,1], (2.2)
kEZ

and if « =1 and 8 # 0,

0<Z\dk|’1n|dk|‘ < 4o0. (2.3)
kEZ

For dy, = p*, X is a simple strictly stationary anticipative AR(1). For X; the strictly stationary solution
of U(F)®(B)X; = ©(F)H(B)et, with F and B the lead and lag operators, the process belongs to the class
of mixed-phase ARMA. Furthermore, if © = H = 1, X, is called a mixed-causal or MAR(p, ¢) process, where
p = deg(®) and ¢ = deg(¥). Adding the (o, 8) = (1,0) restrictions (let say S1S), X; actually comes down
to the so-called anticipative Cauchy AR(1) studied, e.g., in Gouriéroux and Jasiak (2018). As emphasized
in the introduction, stable moving averages of the form (2.1) generate trajectories bound to feature the same
pattern ¢ — cd,—; (up to a scaling ¢ and a time shift 7) recurrently through time. This can be seen as a
strong limitation when it comes to time series modelling as argued by Gouriéroux and Zakoian (2017) in
the context of explosive bubbles. They suggest to alleviate this restriction by considering processes resulting

from the linear combination of different models.

Definition 2.1. Let (Xi,4),...,(Xs+) be J > 1 stable moving averages, each satisfying (2.1)-(2.3), for some
coefficients sequences (d; i), and mutually independent error sequences €; RS S(e, 55,1,0), j=1,...,J.

Let also (m;)=1,....7 be positive numbers summing to 1, o > 0 be a scale parameter and define
J
Xo=0> X, for tez.
j=1

We will call such process X a stable aggregate, and call X;,, j =1,...,J the latent components of X;.

The estimator we propose is valid for any strictly stationary stable aggregate satisfying Definition 2.1,
but in practice, it requires to formally derive the characteristic function of the latent components which
can be tedious. In the rest of this section, we focus on ; = § for simplicity and provide the derivation
for two important parametric cases: the aggregation of purely anticipative AR(1) or MAR(0,1) processes
and the aggregation of mixed causal-noncausal MAR(1,1) processes. Notice that even in these specific
frameworks, these aggregations feature much richer dynamics than single-component stable processes, as
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Figure 1: Simulated stable aggregate dynamics with two components. Top left: Distribution of weights for the two components
with p; = 0.90, 1 = 0.40 for the first component and p2 = 0.70, w2 = 0.60 for the second component. Top right: The resulting
trajectory of the aggregated process X;. Middle and bottom panels: The individual latent component processes with different

persistence parameters.

illustrated in Figure 1. To disentangle the components of X}, our method leverages the independence of the

latent processes and the resulting structure of the joint characteristic function:

J
wx(u,v) = E( exp{i(uX; + vXtH)}) = H ox, (omju, omjv) (2.4)
j=1

where ¢ is the joint characteristic function of a single latent component.

2.1. Case 1: Aggregation of Anticipative AR(1) Processes

We first restrict our attention to the case where each latent component X, is a purely anticipative
AR(1) process. Its moving average representation is given by d;; = pé?lkzo, with |p;| < 1. The process is
thus defined by X, = Y22 p¥e;j 11k The joint characteristic function of the vector (X, X; 1) is given

by

ox,(u,v) = E(expi(qu,t + fUXj,H_l)) = E(expi((upj +0)Xj 41+ uaj’t)>, (2.5)
5



for (u,v) € R%. Due to the independence of the innovations, this simplifies to
ox; (u,v) = E(exp i(up; + v)Xj,tH) E ( exp iusj,t) ,
Assuming for simplicity a common asymmetry parameter §; = 3, we have for o # 1

10gE<eXpi(tu + U)Xj,t+1) = —W (1 — ifsign(up; + v) tan (%))

log E(expiucj) = — (1 — if sign(u) tan (%)) ]

The log-characteristic function of the aggregate is then obtained by substituting these expressions into

Equation (2.4)

J
log px (u, v) = —o* ZW? (lup] 5 ||a (1 — ifsign(up; + v) tan ?) + [ul® (1 — iBsign(u) tan ﬂ;)) .

The Cauchy case examined in Gouriéroux and Zakoian (2017) is recovered for « = 1, § = 0, leading to

log E(exp tuej¢) = —|u| and

up; +v
log px (u,v) = O’Z < pj| ||+|u|>
Pj

As each latent component satisfies |p;| < 1, the strict stationarity condition for &; is given by

>

j=1

S

i < oo forse (0,a)N]0,1]. (2.6)
j

2.2. Case 2: Aggregation of Mized Causal-Noncausal MAR(1,1) Processes

We now consider a richer dynamic structure where each latent component X ; is a mixed causal-noncausal
MAR(1,1) process defined by (1—¢;L)(1—;L™1) X+ = €4, with |¢;] < 1 and |1;| < 1. The corresponding
MA (00) coefficients are given by wf(l—qu@[}j)_l if k > 0and ¢|jk‘ (1—¢;9;) ! for k < 0. The log-characteristic
function for a single component X; is derived from the linear combination of innovations

o0

uXj +vX 001 = Y (udjp + vdjp-1)€j 14k

k=—o00

In the symmetric (SasS) case, the log-characteristic function is

oo

log px; (u,v) = — Z lud; r + vd;j 1"

k=—oc0
We split the sum into its causal (k < 0) and non-causal (k > 1) parts. For the causal part (k < 0), the generic
term is ud;  +vd; p—1 = (1— ¢j¢j)_1(u¢‘jk| —I—vcﬁljkill) = (u+vep;)(1— ¢jwj)_1¢|jk‘. For the non-causal part



(k > 1), the generic term is ud; + vd;p—1 = (1 — q/)jl/)j)_l(m/};? + vw;?*l) = (w; +v)(1 — (bjwj)_ll/}f*l.
The sum becomes the sum of two geometric series

oo

1
Z lud; .+ vd;j p—1|" = o < Z |(u+ve;) ¢\k\|a+z |(ugp; + v)el ™ 10‘)
773

k=—o00 k=—o0

1 o0 o
= | b o D (1051%) + Judsy +0l* Y (1))
11— &1

=0 1=0
_ 1 (|“+U¢j|a n ut); +v|°‘)
11— @51 \ 1 —|gs[* 1 —[hy]*

Finally, substituting this result into the aggregate function from Equation (2.4), we obtain the log-

characteristic function for the MAR(1,1) aggregate for the SaS case . For the asymmetric case with o # 1
we impose for all components ¢; > 0 and ; > 0 and we obtain

J a

log o (u, v) Z — %w]'a Cj(u,v) + Aj(u,v)) (2.7)

=1

where C;(u,v) and Aj(u,v) represent the complex-valued contributions from the causal and non-causal

dynamics of each component j, respectively

Ci(u,v) = % (1 — i sign(u + ve;) tan (%)) ,
Aj(u,v) = W (1 — i sign(uy; + v) tan (%)) .

The strict stationarity condition for A; is now given by

J s 1 |¢UP >
+ f 0,) N[0,1]. 28
Zl _¢31/Jg <1_|¢j|5 1— o, < oo forse (0,a)N]0,1] (2.8)

2.3. The minimum distance estimator

As suggested by Knight and Yu (2002) and Gouriéroux and Zakoian (2017), one can rely on the empirical
counterpart of the joint characteristic function (ECF) to build a minimum distance estimator (MDE). The

ECF is simply defined as

n—1

Z exp(i(uXji1 + vX;)) (2.9)

1
n—1

on(u,v) =

which can be decomposed into real and imaginary parts:

n—1 n—1
1 1 .
on(u,v) = p— i1+ X)) + ] g isin(uXj41 + vX;) (2.10)
Jj=1 j=1

By the law of large numbers, ¢, (u, v) LS o(u,v;0p) as n — oo, where 0y denotes the true parameter values.
Then, the identification of the parameters 8 = (o, p1,...,pJ,71,...,7s, @, ) relies on distinct asymptotic

7



behaviors of the joint characteristic function for different values of (u,v). For small values of w, the limit

behavior of (2.9) is dominated by the a-stable distribution’s properties. Specifically, for u > 0,

loglog |¢n (u,0)| "

=1l 2.11
TS log [ul @1
and
1 n 9,
5= _ lim Uogen(w,0)) - 7o (2.12)
u—0 Re(log ¢, (u,0)) 2
For the identification of the remaining parameters, we exploit the behavior of the function
J
1 n (U, A 1 A%
gn(A) = lim 0B len(w A0l —aazﬂy (' L+ eed® +|A|O‘> (2.13)
u=0 |ul = lpsl

for v = Au and A € R. By evaluating g, () for 2J + 1 different values of A\, we can obtain a system of
equations to identify (o, p1,...,pJ,71,..., 7).

Now we can define the MDE estimator as the minimizer of the objective distance measure

+oo +oo
= / / |n (u,v) — p(u, v; 9)|2w(u, v)dudv (2.14)

where w(u, v) is a weighting function ensuring the convergence of the integral. The MDE estimator is then

defined as

0, = argm@in Dx(0). (2.15)
Knight and Yu (2002), show that under the following regularity conditions, the MDE estimator has standard
limit theory. They suggest that it could accommodate a-stable models. Actually, some of their assump-
tions, listed hereafter, does not readily extend to the a-stable case. The characteristic functions of a-stable
distributions are likely to exhibit singularities in their derivatives when « € (0, 2), particularly near points
where |p;ju + v|* vanishes. Without appropriate regularization through the weight function, these singu-
larities can cause the integrals defining the first and second derivatives of (2.14) to diverge. The following
lemma establishes the precise conditions under which their regularity assumptions remains valid for a-stable

aggregates.

Lemma 2.1. Consider the MDE objective function defined by
“+oo “+o0
= / / lon (1, v) — (u, v; 0)[*w(u, v) du dv (2.16)
— 00 — 0o

where w(u,v) = exp(—k(u? + v?)) with k > 0 a positive constant.

Then,

(1) For any o > 0, the objective function Dx(0) belongs to the differentiability class C1(©).
8



(1t) For any o > 1, the objective function Dx(0) belongs to C*(©) and Assumption 3, 6, 7 and 8 are
satisfied.

Lemma 2.1, shows that we need to reduce the parameter space of « by introducing Assumption 2,
in addition to whole set of assumptions of Knight and Yu (2002), to recover their asymptotic theory in
presence of a-stable models. It also reveals the critical role of the decaying exponential weights w(u,v).
Assumption 4 is satisfied under the condition given by (2.6) or (2.8) and Assumption 5 is satisfied by the
global identification conditions exposed in (2.11), (2.12) and (2.13). The proof of Lemma 2.1 is postponed
in Section Appendix A.

Assumption 1. § € © where the parameter space © C R**3 js a compact set with 0y € Int(O).

Assumption 2. The tail parameter space is such that a € (1,2) and w(u,v) is an exponential weight

function of form exp(—r(u? + v?)) with k > 0 a positive constant.

Assumption 3. With probability one, Dx(0) is twice continuously differentiable under the integral sign

with respect to 6 over ©.
Assumption 4. The sequence {X;} is strictly stationary and ergodic.
Assumption 5. Let Do(0) = [[ |p(u,v;00) — @(u, v;0)|*w(u,v)dudv and Do(0) =0 only if 6 = 6.

Assumption 6. K(z;0) is a measurable function of x for all § and bounded, where

K(-T/7 0) = // |:(COS(U$J'+1 + ’ij) — Re (,O(U,U; 9))W
H(sinuzjpy +vzj) — Im p(u, v; 9))617?”08(:7076)} w(u,v)dudv. (2.17)

Assumption 7. The (2J + 3) x (2J + 3) matriz
_ 9p(u,v;60)\ ( 0%(u,v;6o)
%(6o) = //< 20 > < 50 w(u, v)dudv

0% (u,v;0)
0000’

is uniformly bounded by a w-integrable function over ©.

is nonsingular and

Assumption 8. Let F; be a o-algebra such that {K;,F;} is an adapted stochastic sequence, where K; =
K(zj;0). We can think of F; as being the o-algebra generated by the entire current and past history of K.
Letv; = E[Ko|K;,K;_1,...]—E[Ko|Kj_1,K;_2,...] for j > 0. Assume that E(Ky|F_,,) converges in mean

square to 0 as m — oo and Z;’io E[V}yj]l/Q < 0.



Proposition 2.1. Under Assumptions 1-8
Vi@, — 80) % N(0,5(60) " 12(60)Z(60) ) (2.18)

where 3(0p) is defined in Assumption 7, and Q(0y) is the long-run variance matriz of the score function
K(x;00) from Assumption 6
Q(0o) = V(K (21;60)) + 22 Cov(K (z1;60), K (25 60))
j=2
The proof of this theorem is omitted as, by Lemma 2.1, it follows from a straightforward extension of
Theorem 2.1 of Knight and Yu (2002). Notice that in our a-stable framework, unlike Xu and Knight
(2010), 3(0y) and 2(y) have no closed-form solutions. Moreover, to alleviate the optimization problem

from a numerical standpoint, we directly estimate the products ¢ = o x 7; for 5 =1,...,J.

2.4. Case 3: Aggregation of Mized Stable and Gaussian Processes

Our estimation framework can also be extended to accommodate aggregates mixing a-stable and Gaus-
sian components, an approach explored in Gouriéroux and Zakoian (2017) and Gouriéroux et al. (2021) but
only for the Cauchy case. Consider a process A; resulting from the aggregation of an a-stable MAR(p, 1),
p € {0,1} with a € (1,2) and a Gaussian AR(1) component X ;. As the distinction between causal and
non-causal dynamics is unidentifiable when o = 2, we adopt the standard causal specification for the Gaus-
sian component. The log-characteristic function of the Gaussian AR(1) component X = on X e—1 + M,
ne ~ N(0,1), for the vector (X, Xart—1) is given by

11 5  u?
_§W(u¢/\/’+v) -

log oar(u,v) = 5
The resulting aggregate log-characteristic function, log ¢ x (u, v), is the sum of the stable component’s charac-
teristic functions log px, (u,v) and log ¢ (u, v), scaled by their respective aggregation weights as in Equation
(2.4). This composite function can be directly employed in the MDE objective function (2.14). The esti-
mator 0,, defined in (2.15) remains valid because the stability index o = 2 for the Gaussian component is
fixed and not estimated. Since log@ar(u,v) is C* with respect to its parameters, and log o (u,v) is C?
for a € (1,2) (as established in Lemma 2.1), their sum remains C2?. The regularity conditions required

for the asymptotic theory of the MDE estimator (Proposition 2.1) are thus satisfied, allowing for the joint

identification of the parameters of both the stable and Gaussian latent processes.

3. Forecasting aggregation of moving averages

This section begins by summarizing relevant findings from de Truchis et al. (2025a), DFT henceforth,

concerning the description of stable random vectors on the unit cylinder.* Let the vector X = (X1,..., Xy)

4We exclude the Gaussian case from further discussion as anticipative dynamics are not identifiable when o = 2.
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be an a-stable random vector, I a finite spectral measure on the Euclidean unit sphere S; and u° a non-

random vector in R?, such that,

E(e““"“) = exp { - /S [(u, s)|* (1 —isign((u, s))w(a, (u, s>))I‘(ds) +1 <u,u0>}, Yu € RY,
(3.1)

where (-,-) denotes the canonical scalar product, w(e,s) = tg(Z2), if @ # 1, and w(l,s) = —21In|s|
otherwise, for s € R. Drawing on DFT, we explore alternative representations of X where the integration
is performed over a unit cylinder CI'l .= {s € R? : ||s| = 1}, defined by a semi-norm | - || on R%, in
presence of stable aggregates. The reason why we are interested in alternative representations is that, in
the presence of the Euclidean norm, the spectral measure encodes information in all directions of R and
does not allow us to predict future elements of the vector X while ensuring that these future elements are
not themselves carriers of information for prediction. By contrast, the semi-norm || - || is flexible enough to
force some directions R? to vanish.

We will say that X 1is representable on C(U'” if X can be written as in (3.1) with
(Sq, T, u°) replaced by (C(g"l,F|"|‘,uﬁ_||). As demonstrated in DFT for the single-component model,
X is representable on C’“}'H < TI(KIl) = 0 when a # 1 or if X is S1S. Moreover, T'l'l(ds) =
IIs]lz«T o THfHI(ds) with T} = Sq \ KI'l — CC‘IHI defined by Tj.(s) = s/|s||. Importantly, this new
representation inherits from the traditional representation the following asymptotic conditional tail prop-
erty: for any Borel sets 4, B ¢ C/I'l with Tl (a<A N B)) =TI(8B) =0, and TII(B) > 0,

rllianB)

IPL‘C'”(X,A|B) II)OO F“'H(B) )

(3.2)

where OB (resp. 9(A N B)) denotes the boundary of B (resp. AN B), and

X X
Pll(x, A|B ::]P’(GA‘ X >x,€B>.
(X, A1) =P ey < 4|11 > = 5

To build a forecasting strategy upon these theoretical results, DFT considers vectors of the form X; =
(Xe—my ooy Xoy Xeg1, .-y Xen), m > 0, h > 1, derived from a stable moving average process and choose,

without loss of generality, semi-norms satisfying
x—m, . zo, 21, .. zp)]| =0 <= 2_p =... =20 =0, (3.3)

for any (z_p, ..., o) € R™MHL They show that for a # 1 and (a, 3) = (1,0), the representability of Xy
on a semi-norm unit cylinder depends on the number of observation m+ 1 but not on the prediction horizon
h. More precisely, they find that sequences of consecutive zero values in must either be of finite length or
extend infinitely to the left :

Vk € Z, [(dk+m,...,dk):o — Vi<k-1, d;=0|. (3.4)

11



This result surprisingly establishes that the anticipativeness of a stable moving average is a necessary con-
dition (and sufficient for o # 1 and (o, 8) = (1,0)) to make use of (3.2) in order to feasibly predict X.
The more non-anticipative a moving average is (i.e., the larger the gaps of zeros in its forward-looking
coefficients), the larger m must be to achieve representability of (X;—m,..., X¢, Xit1,..., X¢4n) on the

appropriate unit cylinder.

3.1. Extending the representation to stable aggregates
To extend these results to stable aggregates, we first provide the spectral representation of paths of the

aggregated process X; on the Euclidean unit sphere.

Lemma 3.1. Let X; be an a-stable aggregate with latent moving averages (X14), ..., (Xy+) as in Definition
2.1, but now allowing f5; € [—1,1] to vary across components, and Xy = (Xy—pm, ..., X, Xig1, ..., Xegn) for
anym >0, h>1.

Then, X is a-stable and its spectral representation (T, u°) on the Euclidean unit sphere Sy, yn+1 writes

r = "“Z Z ij7ﬁw;é||dj,k||ga{ 9d, } (3.5)
Jj=19€S, keZ
lldiklle
0 0, ifa#1
B = ) ;
—70 Zj:l Zkezﬂjﬁjdj,k II’IHJ’ITjdj’k”e, zfoz: 1
where dj i, = (dj ktms - djk, djj—1, -, djp—n), Wi = (L +965)/2, foranyk € Z, j=1,...,J, d is the

Dirac mass, 9 € Sy with S1 = {—1,+1}, and if d; , = 0, the term vanishes by convention from the sums.

Notice that I' = o¢ Z;.Izl mi'l';, where I'; denotes the spectral measure of the path X ;; from the moving
average (X;,), j=1,...,J. If all the X ,’s are symmetric (8; = 0 for all j), then X, and I" are symmetric
as well, but the reciprocal however does not hold true. The measure I' will be symmetric if and only if
o Z;’Zl s (I‘j (A) — I"j(—A)) = 0 for any Borel set A C Sp+nt1- The latter condition is necessary and
sufficient for X; to be symmetric in the case where a # 1, whereas for a = 1, it guarantees that X, will
be symmetric up to an additive shifting, as u° may be non-zero. The symmetry of paths intervenes in the

representability conditions provided in the following lemma.

Lemma 3.2. Let X; be an a-stable aggregate with latent moving averages (X1 ), ..., (Xy+) as in Definition
2.1, where each component j has asymmetry parameter 5; € [—1,1]. Let m > 0, h > 1 and || - || be a
semi-norm on R™" L satisfying (3.3). When either a # 1 or X ~ S18, the vector X, is representable on
C’T‘lrihﬂ if and only if condition (3.4) holds with m for all coefficient sequences (dj )k, j = 1,...,J. For

a =1 and Xy asymmetric, the vector X, is representable on cll if and only if (3.4) holds and

m~+h+1
> lidjklle

kEZ

In <||djk||/||dJk||e)

<400, Vje{l,...,J} (3.6)
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hold with m and h for all sequences (d; )k, j=1,...,J.

The next proposition extends to stable aggregated processes the notion of past-representability introduced

in DFT and helps to understand to what extent anticipativeness is crucial in this more general framework.

Proposition 3.1. Let X; be an a-stable aggregate with latent moving averages (X14),...,(Xs¢) as in Def-
inition 2.1, where X; = UZ;'le m; Xt with scale parameter o > 0.

(v) Define for j=1,...,J the sets Mj ={m>1: Ik €Z, djpsm=...=djrt1 =0, djp #0}, and

sup M, if M, #£0,
mo,; = P ’ f ’ 75 (37)
0, if M;=0.
(a) For a # 1, the aggregated process X; is past-representable if and only if (X,.) is past-
representable for all j=1,...,J, i.e.,
sup mo,; < +o0. (3.8)
g=1,....J
Moreover, letting m > 0, h > 1, X; is (m,h)-past-representable if and only if (3.8) holds and m >
_EnaX mo,;-

Jj=1,....J
(b) For o =1, the process X is past-representable if and only if (3.8) holds and there exists a pair

(m,h), m > max_m,j, h > 1 such that either
J=1,...,

X, is S1S, or, X asymmetric and (3.6) holds for all sequences (d; ).

If such a pair exists, then the process X; is (m, h)-past-representable.
(e0) Let ||| be a semi-norm satisfying (3.3) and assume that Xy is (m, h)-past-representable for some m > 0,

h > 1. The spectral representation (T pl-1) of the vector Xy = (Xi—m, ..., Xe, Xig1s ..., Xogn) on Cﬂ;ﬂ_hﬂ

is given by:

J

Tl = o'az Z Zu}j’gﬂ;-xndj’kna(s{ dd; i }, (3.9)

j=19€S1 k€Z
’ ' el

R fo#l (3.10)

o\ .
— 2 31 kermiBidinn Jomidl, if o =1
where d; . = (djktms - Dy dj k=1, - djk—n), Wio = (1+96;)/2, foranyk € Z, j=1,...,J, 0 is the

Dirac mass, 9 € Sy with S1 = {—1,+1}, and if d; , = 0, the term vanishes by convention from the sums.

The necessary condition (3.8) extends what was noticed in the Proposition 3 of DFT, namely, that
anticipativeness is a minimal requirement for past-representability. Importantly, notice that a single non-
anticipative latent moving average is enough to render the aggregated process not past-representable, re-
gardless of the other latent components. Also, for a # 1, the past-representability of an aggregated process
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is equivalent to that of its latent moving averages, but this does not seem to hold in general for « = 1. In
the latter case however, if all the latent moving averages are symmetric, that is, 1 = ... = 8; = 0, then
the paths X; are S1S for any m > 0, h > 1 and (¢)(b) collapses to ()(a).

The representability condition also simplifies in the case of aggregated ARMA processes and requires

each latent ARMA process to be anticipative.

Corollary 3.1. For any j = 1,...,J, let (X;:) be the ARMA strictly stationary solution of
U, (F)®;(B)X;, = O;(F)H;(B)ej, with mutually independent sequences €;, S S(«, 84,1,0). Define
X = 02;121 ;X for any positive weights m; summing to 1 and o > 0. Then, for any a € (0,2),
(B1s---,B7) € [-1,1]7, the following statements are equivalent:

(1)  (A) is past-representable,

(1) inf deg(;) 2 1,

(eer) sjup mo; < +00,

with thia mo,;’s as in (3.7). Moreover, letting m > 0, h > 1, the aggregated process (X;) is (m,h)-past-

representable if and only if for any j =1,...,J, mg; < 400, and m > maxmy ;.
J

3.2. Tail conditional distribution of stable aggregates

Now, we derive the tail conditional distribution of linear stable aggregates. The case of a general past-
representable stable aggregate is considered. We also pay a particular attention to the anticipative GaS
AR(1) because to the best of our knowledge, no deconvolution estimation techniques exists for stable aggre-
gates as defined in 2.1, except for the anticipative GaS AR(1) discussed in Section 2. To be relevant for the
prediction framework, the Borel set B appearing in Equation 3.2 has to be chosen such that the conditioning
event {|| X¢| > x}N{X¢/|| X¢|| € B} is independent of the future realisations X1, ..., Xip. For ||-]| a semi-
norm on R™*"+1 satisfying (3.3), denote Slﬂrl ={(s—my---,80) ER™ 1 |(s_pm,...,50,0,...,0)]| =1}.°

Then, for any Borel set V' C S,H,;Url, define the Borel set B(V') C Ciﬂh_H as
B(V)=V xR"

Notice in particular that for V = Sﬂrﬂrl, we have B(V) = C’lln'”rl. In the following, we will use Borel sets of
the above form to condition the distribution of the complete vector X¢/||X¢| on the observed shape of the
past trajectory. The latter information is contained in the Borel set V', which we will typically assume to

be some small neighbourhood on Slmrl. It will be useful in the following to notice that

VxR ={sechl,. i fls)ev],
5The set S/

'mo1 corresponds to the unit sphere of R™+1 relative to the restriction of || - || to the first m 4+ 1 dimensions.
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where f the function defined by

Rm+h+1 N Rm+1
f: . (3.11)

(T—my e s @Oy X1y e s @p) > (T_pmy ..., T0)

Let X; an a-stable aggregate as in Definition 2.1. Assume X is (m, h)-past-representable, for some

m >0, h > 1. Also, we know by Proposition 3.1 (s¢), that Tl is of the form

J

LM =Y 737 Y Jwionflldisl®0 (g, - (3.12)

j=19€5; keZ { : }
1kl

Proposition 3.2. Let X; be an «-stable aggregate as in Definition 2.1. Assume X; is (m,h)-past-

representable, for some m > 0, h > 1. Also, we know by Proposition 3.1 (i), that Tl is of the form

J

P =637 37 > wyoms dyal*6 { 9 } (3.13)

j=19€S51 k€EZ
! ' 1.l

Under the above assumptions, we have

Ll {Mﬂv ca. Y ev}
djkll lldj x|

pll (Xt,A‘B(V)) — , (3.14)
F=+00 9d; . 3f(d; k)
Tl {Jv’“ echl, |- =20 ev}
1.kl .kl
| | vd; E . Uf(dji)
for any Borel sets A C C’ln‘_kh_kl, V C S,‘n‘_i_l such that {Hd:kH € C’lnu_h+1 : m eV # 0,

Tl (a(A N B(V))) =TI'(@B(V)) = 0, where B(V) =V x R* and f is as in (3.11).

Observe that setting V = gl

mai1, and A an arbitrarily small closed neighbourhood of all the points

(9d; k/ld;j k|)o.5,k, as in the single-component case we have zEIJPOO]P’(Xt/HXtH € A’HX,:H > x) =1.In
other terms, when far from central values, the trajectory of process (X;) necessarily features patterns of the
same shape as some 9d; /| d; x|/, which is a finite piece of a moving average’s coefficient sequence. The
index j indicates from which of the J underlying moving averages the pattern stems from, the index k points
to which piece (dj k+4m,--->djk, djk—1,--.,djk—p) of this moving average it corresponds, and ¥ € {—1,+1}
indicates whether the pattern is flipped upside down (in case the extreme event is driven by a negative value
of an error (¢;,+)). The likelihood of a pattern ¥d; /|/d; x| can be evaluated by setting A to be a small
neighbourhood of that point. In particular, only one pattern dy/||d| can appear through time for J =1
(up to a time shift and sign flipping). This is no longer the case in general for J > 2, where the shape of
each extreme event appears as if being drawn from a collection of patterns.

Interestingly, as in DFT in the non-aggregated case, the observed path (X;—p,, ..., Xi—1, &) /|| X¢|| will a
fortiori be of the same shape as some 9(d; x+m, - - -, djk+1,djk)/||dj x| when an extreme event will approach
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in time. Observing the initial part of the pattern can give information about the remaining unobserved
piece: the conditional likelihood of the latter can be assessed by setting V' to be a small neighbourhood of
the observed pattern. In practice, we anticipate that matching an observed path to a particular pattern j

among the collection of J patterns will be challenging, even for a small number of latent components.

3.8. Example: Aggregation of Anticipative AR(1) Processes

We now consider the aggregation of stable anticipative AR(1) processes discussed in Section 2. We
assume without loss of generality that the p;’s are distinct. For each anticipative AR(1) with parameter
pj, the moving average coefficients are of the form (P?l{kzo})k» and thus, mg; = 0 for all j, where the
mo,;’s are given in (3.7). By Corollary (3.1), we know for any m > 0, h > 1, the aggregated process X}
is (m, h)-past-representable. The spectral measures of paths X; simplify and charge finitely many points.

Their forms are given in the next lemma.

Lemma 3.3. Let X; be an aggregation of a-stable anticipative AR(1) processes as in Definition 2.1 with
djr = p? and general scale parameter o > 0.
Letting Xt = (Xi—m,y -« oy Xey X1, -« -y Xon) for m > 0, h > 1, its spectral measure on Cllr;‘_l_hH for a

seminorm satisfying (3.3) is given by

J h—1 T
. a,_o @ Wi *
il — Z wyd{(9.0,..0)} + ZO’ Ly (wj’ﬁ Z djrl“6 9d; . ) T I_JWudj,hH d vd; )]7
et =1 k=1 Id; o] ’ I u]

(3.15)

where for alld € Sy, j€{l,...,J} and —m+1 <k <h,

dik = (P L s mys - 5 L0y, 25 L1y -5 25 i),

wjo = (1+955)/2,
J
wy = ZO’OCW?U/L@,
j=1
W0 = (1+055)/2,
<a>
and if h =1 and m = 0, the sum Zz;imﬂ vanishes by convention.
The next proposition provides the tail conditional distribution of future paths in the case where the p;’s

are positive. Let us first introduce useful neighbourhoods of the distinct charged points of TI'l. Denote
m-+h+1

—
do.—m = (1,0,...,0) so that the charged points of T'l'l are all of the form ¥d;  /||d; x|| with indexes (¥, 7, k)
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in the set 7 := 5p x ({1, ooy I x{=m, h}U{(0, —m)}). With f as in (3.11), define for any (J¢, jo, ko) € Z,
the set Vj as any closed neighbourhood of ¥g f(d;, k. )/||djo k|| such that

l 4 ! l 4 ! -
W oK) €T, V' f(djr k) v — Vf(djr) ﬂof(dao,ko)7
;e el o, kol

(3.16)

In other terms, Vy x R? is a subset of Cﬂih 41 in which the only points charged by Tl all have the first
(m+1)t" coinciding with 9o f (djq ko )/||djo ko ||- Define also Ay ;i for any (4, 4, k) as any closed neighbourhood
of ¥d; 1./||d; || which does not contain any other charged point of T!l'l| that is,

Vdj

V('&/,j,,k,) EI? M1
1 1l

€Ay = .5 K)=(9,74k). (3.17)

Proposition 3.3. Let X; be an aggregation of a-stable anticipative AR(1) processes as in Definition 2.1 with
djr = pf € (0,1) for all j’s.,Let Xy, the d; 1, ’s and the spectral measure of Xy be as given in Lemma 3.3, for
anym >0, h > 1. Let Vi be any small closed neighbourhood of Vo f(dj, ko) /||djo k0 || in the sense of (3.16)
for some (Vo, jo, ko) € T and let B(Vy) = Vo x R". Then, with Ay j, an arbitrarily small neighbourhood of
some 9d; 1./||d; k|| as in (3.17), the following hold.

(1) Case m > 1.

(a) If 0 < kg < h:

1940 ** (1 = |pjy |*) 80, (9)35, (4), 0 <k <h—1,
PRI (Xe, Ag k| BOVG)) —

T—00

‘pjo‘ah(sﬁo (19)5]0(;7)7 k= h.
(b) If —m < ko < —1:
P (Xe. Aot BOB)) =3 80 (0)65,(7)00, (1)

(1) Case m = 0.

J o
D im1 o Wi, 5

0y (), k=0
Zj:1pi,190 ’
P (X, Ao [ BOR)) — 4 =22 —lpil*F (L= Iy *)o00y (0), 1<k <h—1,

Freo Zi:l Pi g

Pj,90

ﬁlmla"éwo}(ﬁ), k=h,
=1 £",V0

with pjv, = T§wj9,/(1 = |p;|*).

For m > 1, that is, if the observed path is assumed to be of length at least 2, there is a significant difference
between whether ko € {0,...,h} or kg € {—m, ..., —1}. For the latter, the asymptotic probability of the
17



whole path X /|| X¢|| being in an arbitrarily small neighbourhood of 9d, . /|d; x| is 1 if and only if ¥ = 9,
j = jo, k = ko: given the observed path, the shape of the future trajectory is fully determined. For the
former, this probability is strictly positive if and only if ¥ = ¥ and j = jp, but the observed pattern
is compatible with several distinct future paths. One can see why this is the case from the form of the
sequences d; /| d; k| and of their restrictions to the first m + 1 components f(d;x)/|d;k|. On the one

hand (omitting 9),

m+1 h
k+m k- k-1
tm ok ol 51,0,...,0
(pi—&-m pi pi_l & ) , for ke {0,...,h},
d H(p] l""?pj?pj ""’pj71707"'70)||
gk
Il
! (PE™, . psy 1,0,...,0,0,...,0)
k+m ) for ke {—m, ey —1}
(o5, P35 1,0,...,0,0,...,0)
m—+1 h

We can notice that all the above sequences are pieces of explosive exponentials, terminated at some coordi-
nate. For k € {0,...,h}, the first zero component, i.e. the crash of the bubble, is situated at or after the
(m + 2)*™® component, whereas for k € {—m, ..., —1}, it is situated at or before the (m + 1)*'. Using the
homogeneity of the semi-norm, we have on the other hand that

m—+1

m
(pj a"'apjv]-)
1T+, p5,1,0,...,0,0,...,0)|"
\ A

m+1 h

for ke{0,...,h},

fldjk)

”d],k” m+1
(p§+m,...,pj,1,0,...,o)

||(p§+m7"'7pj?1507"' ﬂ0707"'70)||

——
m—+1 h

, for ke{-m,...,—1}.

Thus, conditioning the trajectory on the event {f(X:)/||X¢l| = f(djyko)/||@jo.k0ll} for some ky €
{=m,...,—1} amounts to condition on the burst of a bubble being observed in the past trajectory with
no new bubble forming yet, which allows to identify exactly the position of the pattern on the j*! moving
average’s coefficient sequence.

When conditioning with ko € {0, ..., h} however, the crash date is not observed and can happen either
in the next h — 1 periods, or after the h'". However, the shape of the observed path is that of a piece of
exponential with growth rate pj_1 regardless of the remaining time before the burst, which leaves several
future paths possible. One can quantify the likelihood of each potential scenario: the quantity |p;|**(1—|p;|%)
|ah

corresponds to the probability that the bubble will peak in exactly k periods (0 < k < h), and |p,
corresponds to the probability that the bubble will last at least h more periods.
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The previous statement confirms the interpretation of the conditional moments proposed in Fries (2022)
for the stable anticipative AR(1) case (J = 1). It also extends it in two ways:

(¢) by accounting for paths rather than point prediction,

(et) by showing that the aggregation of AR(1) processes also features killed exponential explosive episodes
but with various growth rates and crash probabilities.

Proposition 3.3 furthermore shows that asymptotically, as few as two observations are sufficient to identify
the growth rate pj_l of an ongoing extreme episode,® and the conditional dynamics within this given event
will be similar to that of a simple AR(1) with corresponding parameter. An identification of the growth rate
in the early developments of the bubble appears possible, allowing to infer in advance the odds of crashes,

as long as the latent components parameters are identified.

4. Monte-Carlo Simulation

This section presents Monte Carlo evidence on the performance of the estimation method for a-stable
moving average aggregates introduced in Section 2. We evaluate the estimator’s ability to recover the true
parameters under various specifications, focusing on the case where the observed process is generated by the

aggregation of two independent a-stable AR(1) processes. We generate samples according to the model

Xy =m Xy + mXa, (4.1)
i.i.d.

Xjie=piXji-1+eie, g ~ S(a,3,1,0) (4.2)
where j € {1,2} and p; € (0,1). We fix 0 = 1.6, my = 7/16 and 7y = 9/16 for the weights of the mixture
in all scenarios. Recall that we alleviate the optimization problem by estimating the combined parameters
gj=o0 xmjfor j =1,...,J, thereby leading to ¢; = o x 11 = 0.7 and ¢ = 0 x 3 = 0.9. We examine three

specific cases:

1. Cauchy distribution (S18): « =1and =0
2. Symmetric a-stable (SasS) distribution: general o with 5 =10
3. General a-stable (GasS) distribution: general o with 8 #£ 0

For each case, we perform simulations with sample sizes of T' = {250, 500, 1000}, each with 1,000 repli-
cations. The parameters are estimated using the minimum distance estimator based on the empirical

characteristic function as described in Section 2, uniform weights and grids for v and v defined as 10 equally

6This holds asymptotically in the (semi-)norm of the observed path, but in practice it can be expected that the noise
surrounding the trajectory will make this identification difficult with only two observations. Longer path lengths (higher m)
may provide robustness to the identification, but could also incorporate some bias by taking into account past extreme events,

such as now-collapsed bubbles. One can suspect a bias-variance trade-off when searching for an optimal choice of m.
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spaced points in [—0.5,0.5]. One could achieve higher efficiency by computing optimal weights but we do
not explore further this issue.
In the S18 scenario, both components share the Cauchy distribution restrictions. Table 1 presents the

bias, the root mean square error (RMSE) and the mean relative error (MRE) for this scenario.

Table 1: Monte Carlo Results for S1S AR(1) Aggregates

T = 250 T = 500 T = 1000

0 True Value Bias RMSE MRE Bias RMSE MRE Bias RMSE MRE

p1 0.800 -0.008  0.050 0.046 -0.004 0.030 0.029 -0.002 0.020 0.019
S1 0.700 -0.023 0.322 0.368 0.002 0.249 0.2v5 -0.002 0.179 0.196
P2 0.300 -0.035 0.169 0.455 -0.025 0.128 0.333 -0.012 0.089  0.223
S2 0.900 -0.035 0.279 0.249 -0.015 0.193 0.171 -0.007 0.134 0.119

The estimation of S1S AR(1) aggregates demonstrates promising results across all parameters. For
smaller sample sizes of T = 250, the estimator already shows good performance with a moderate bias (-
0.008) and RMSE (0.050) for p;, though the MRE is slightly higher at 4.6%. For the largest coefficient
p1, the results figures out negligible bias (-0.001), low RMSE (0.035), and MRE of only 3.5% for T' = 500.
These results further improve with the larger sample size, where the MRE decreases to 2.6% for T' = 1000.
The combined parameter ¢; exhibits higher estimation uncertainty with an RMSE of 0.322 and MRE of
36.8% for T' = 250, which improves to an RMSE of 0.201 and MRE of 22.7% for T" = 500, and further to
0.147 and 16.9%, respectively, for T' = 1000. The smallest autoregressive coefficient py appears slightly more
challenging to estimate, showing the highest mean relative error among all parameters (45.5% for T' = 250,
34.8% for T = 500 and 26.6% for T' = 1000). Importantly, the consistent reduction in RMSE and MRE
from T = 250 to T' = 500 to T" = 1000 across all parameters confirms that the estimator behaves well in
finite sample.

We now consider the Sa$ case with § = 0 and = 1.5. The true autoregressive and scale parameters
remain the same as in the Cauchy case. The results are reported in Table 2. The results for SaS AR(1)
aggregates reveal interesting patterns. Compared to the Cauchy case, all parameters show higher RMSE and
mean relative errors, suggesting that estimation becomes more challenging when adding the identification of
«. With small samples of T' = 250, we observe a notable positive bias (0.013) for p; with RMSE of 0.081 and
MRE of 7.3%, while pa shows substantial bias (-0.127) and MRE (60.0%). For the autoregressive coeflicient
p1, the RMSE improves to 0.079 (compared to 0.035 in the Cauchy case) for T = 500, with a MRE of
7.8%. Similarly, ¢; shows a substantial increase in estimation uncertainty, with RMSE of 0.276 and MRE
of 33.0%. The parameter ps continues to exhibit the highest MRE (47.4%), indicating persistent challenges
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in its estimation. A notable result is the high precision in estimating the tail index «, with a small bias
(-0.037) and MRE of 8.6% even at T' = 250, improving to a bias of 0.015, relatively low RMSE (0.123), and
MRE of only 6.6% for T' = 500. This improves further for T = 1000, with the MRE decreasing to 5.0%.
The accurate estimation of « is crucial for practical applications, as it characterizes the heaviness of the
tails of the distribution and it impact the identification of all other parameters. The increase in sample size
from T = 250 to T' = 500 to T" = 1000 leads to consistent improvements in all estimation metrics for most
parameters, though the magnitude of improvement varies across parameters. This confirms the good finite
sample properties of the estimator when departing from the Cauchy and extending Gouriéroux and Zakoian

(2017).

Table 2: Monte Carlo Results for SaS AR(1) Aggregates with a = 1.5

T = 250 T =500 T = 1000

¢ True Value Bias RMSE MRE Bias RMSE MRE Bias RMSE MRE

p1 0.800 0.013 0.081 0.073 0.000 0.062 0.057 -0.005 0.046 0.044

1 0.700 -0.101  0.276 0.325 -0.021 0.216 0.247 0.019 0.168 0.195
P2 0.300 -0.127  0.209 0.600 -0.096 0.190 0.529 -0.072 0.148 0.391
S2 0.900 -0.124  0.235 0.212 -0.098 0.197 0.175 -0.071 0.153 0.135
o 1.500 -0.037  0.173 0.086 -0.014 0.127 0.065 -0.004 0.088  0.046

Finally, Table 3 presents the estimation results for the GaS AR(1) aggregates with both v = 1.5 and
B = 0.3. The estimation of GaS AR(1) aggregates introduces additional challenges due to the non-zero
asymmetry parameter 5. At the smallest sample size of T = 250, the estimator already displays some
stability with a slight negative bias (-0.005) for p;, though with higher RMSE (0.091) and MRE (8.4%)
compared to simpler specifications. The autoregressive coefficient p; shows a positive bias (0.006) for
T = 500, unlike the negative biases observed in the previous cases. Its RMSE (0.097) and MRE (9.6%)
are higher than both the Cauchy and SaS cases, indicating increased estimation difficulty. The parameter
p2 continues to be the most challenging among the autoregressive and scale parameters, with a substantial
negative bias (-0.089) and high mean relative error (59.4%) for T = 250, improving slightly with a negative
bias (-0.075), high RMSE (0.193), and MRE of 53.6% for T" = 500. The combined parameters ¢; and ¢
also exhibit considerable estimation uncertainty. Despite these challenges, the tail index « is estimated
with remarkable precision even at T = 250 with a small bias (-0.026), RMSE of 0.164, and MRE of 8.3%,
improving to a minimal bias (-0.006), RMSE of 0.116, and MRE of just 6.2% for 7' = 500. This reinforces
the robustness of the estimator in recovering the tail behavior even in more complex settings. As expected,

the asymmetry parameter 3 proves to be the most difficult to estimate, with a MRE of 62.8% for T' = 250
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and 56.3% for T = 500. While this improves to 37.4% for T = 1000, it remains substantially higher than
the other parameters, highlighting the intrinsic difficulty in capturing the asymmetry in stable distributions.
Fortunately, identification of AR and scales parameters do not depend on [ meaning that this lack of

precision is not detrimental if one is not crucially interested in measuring accurately the asymmetry.

Table 3: Monte Carlo Results for GaS AR(1) Aggregates with o = 1.5, 3 =0.3

T =250 T =500 T = 1000

¢ True Value Bias RMSE MRE Bias RMSE MRE Bias RMSE MRE

p1 0.800 -0.006  0.091 0.084 -0.015 0.073 0.069 -0.013 0.057  0.055
S1 0.700 -0.054 0.285 0.335 0.013 0.234 0.278 0.026 0.200 0.236
P2 0.300 -0.089  0.208 0.594 -0.068 0.186 0.510 -0.052 0.146 0.388
S2 0.900 -0.124  0.234 0.211 -0.115 0.205 0.179 -0.092 0.178 0.154
o 1.500 -0.026  0.164 0.083 -0.009 0.120 0.060 -0.003 0.082 0.042

0.300 -0.007  0.262 0.628 -0.003 0.186 0.457 -0.001 0.132 0.328

5. Application to financial markets

To illustrate the empirical relevance of our estimator and forecasting theoretical results, we apply them
to financial data. In particular, we focus on the CBOE Crude Oil ETF Volatility Index (OVX) as it
reflects, by essence, the market’s anticipation regarding the volatility of crude oil ETF prices over the
next 30 days. In that sense, it aggregates all sources of investors’ expectations and this explains why VIX
indexes are often referred to as fear indices. In the traditional theoretical foundation of the efficient markets
hypothesis, agents are homogeneous and make rational use of all relevant information in their trading
decisions, thereby leading to perfectly random movement of prices. However, a large body of the financial
literature has identified various anomalies calling for heterogeneous agent models and in particular the so-
called fundamentalist/chartist dichotomy (e.g. Agliari et al. , 2018). These two types of agents are likely to
generate distinct dynamics in the crude oil volatility index, in particular when market fear is growing. We
collect the CBOE OVX index retrieved from the FRED (Federal Reserve Bank of St. Louis) website. The
dataset, ranging from 23/05/2015 to 23/05/2025, is sampled at weekly frequency (T = 522) and linearly
detrended to avoid high-frequency noise contamination (see Hecq and Voisin , 2021, for a discussion on the
pre-treatment of data). We estimate three different models as described in Section 4, with initial guess
obtained from the sequential estimation approach proposed by de Truchis et al. (2025b): a general a-stable
model with asymmetry (GasS), a symmetric a-stable model (SaS), and a symmetric Cauchy model (S1S).

The results in Table 4 reveal several compelling patterns about the dynamics of the OVX index. First,
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Table 4: Estimation results for OVX index with three different specifications

GaS Sas S1S

)

Estimate Std. t-stats Estimate Std. t-stats  Estimate Std. t-stats

p1 0.7989  0.0673 11.862 0.2507  0.0077  32.477 0.9226  0.0082 112.824
P2 0.8470  0.0668 12.678 0.9865  0.0040 244.560  0.9346  0.0074 126.404
1.4686  0.0995 14.764 1.2405  0.0084 147.613 - - -
-0.1275  0.0684 -1.863 - - - - - -
2.0932 0.2400 8.723 0.8964  0.0212  42.226 0.1966  0.0294  6.692
m 0.2790  0.0403 6.930 0.8915  0.0052 171.084 0.5029  0.0511  9.833
o 0.7210  0.0409 17.622 0.1085  0.0182  5.957 0.4971 0.0545  9.121

the GaS specification provides strong evidence of anticipative dynamics, as demonstrated by the highly
significant AR coefficients (with estimated values of p; = 0.80 and p2 = 0.85). We observe a clear distinction
between the two latent components: the first component (p; = 0.80) exhibits a slightly less persistent but
still strong bubble pattern, while the second component (p; = 0.85) captures more persistent explosive
episodes. The weights associated with each component show an asymmetric pattern, with 7 = 0.28 and
mo = 0.72, indicating a strong dominance of the second, more persistent component in the overall dynamics of
crude oil volatility expectations. Second, the estimated tail index parameter o = 1.47 confirms the presence
of heavy tails that significantly exceed what a Gaussian distribution would accommodate, reflecting the
extreme nature of oil market volatility. The asymmetry parameter in the GaS specification is estimated at
B = —0.13, with a t-statistic of -1.86, suggesting a lack of significance at 5% risk level. Third, while the SaS
model yields statistically significant parameter estimates, it shows a markedly different parameter structure
with o = 1.24 and very different AR coefficients (p; = 0.25, po = 0.99), suggesting that the asymmetry,
albeit probably not really significant, numerically plays a non-negligible role in the model specification. The
S1S (Cauchy) model, with its restriction of o = 1, appears overly restrictive given the estimated « values
in the more flexible models, though it still yields highly significant parameter estimates with p; = 0.92 and
p2 = 0.93.

To better visualize how each component captures distinct anticipative dynamics, we implement the
deconvolution methodology proposed in de Truchis et al. (2025b) designed for extracting stable latent
components. Our implementation employs a dual Markov-chain Monte-Carlo filtering approach with 2,000
particles over a 5-period rolling window. Figure 2 presents the results, revealing a clear demarcation in the
roles of the two latent components. The dramatic spikes observed during periods of oil market turbulence

are captured by both components, with the first component (middle panel), characterized by its slightly
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Figure 2: Deconvolution of the OVX index from the GaS two components model filtrated using de Truchis et al. (2025b)
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lower persistence coefficient (p; = 0.80), capturing more abrupt movements, while the second component
(bottom panel), with its higher persistence (p2 = 0.85), tracks the more sustained explosive patterns that
characterize prolonged periods of oil market uncertainty.

Notably, the visualization reveals that periods of high oil market volatility can occasionally feature a
superposition of two distinct bubble dynamics working simultaneously, with their combined effect visible
in the observed index (top panel). The recent volatility episodes visible in the sample demonstrate how
both components contribute to different aspects of oil market fear, with the first component providing rapid
responses to immediate shocks and the second component maintaining longer-term market anxiety. This
filtration-based visualization proves invaluable for matching observed market trajectories to specific d;
patterns among the collection generated by the latent components, thereby enhancing our ability to apply
the forecasting theory developed in Section 3.

To illustrate our forecasting framework in practice, we conduct an in-sample prediction exercise for
the 2020 oil market disruption event characterized by the significant volatility spike observed in the OVX
index during the COVID-19 pandemic and the oil price war. Setting January 2020 as our cutoff point, we
apply our methodology to forecast the subsequent crash dates for each of the identified latent components.
Our approach is fundamentally based on pattern recognition, exploiting the theoretical finding that during
extreme events, trajectories adhere to specific patterns characterized by the normalized form 9d; ;/|d; k|-
These pattern structures are defined by four essential elements: the shape derived from the coefficient
sequence d; x; the component index j € {1,..., J} identifying which latent process is driving the event; the
time shift ky € Z indicating the position within the pattern; and the sign ¥ € {—1,+41} reflecting upward
or downward movements. Our prediction strategy implements a systematic four-step algorithm. First, we
observe the initial segment of an emerging extreme event. Second, we match this observed trajectory to
the collection of theoretical patterns derived from our estimated stable aggregate model, conditioning on an
m + 1 length of observed trajectory, thereby determining k¢. Third, we compute conditional probabilities
for future trajectories using Proposition 3.2, which provides the mathematical foundation for calculating
tail conditional distributions. Finally, we generate forecasts for the remaining trajectory based on these
probabilistic assessments.

Table 5 presents the in-sample bubble forecast prediction probabilities derived from our empirical ap-
plication. Each component generates a finite collection of potential patterns that an extreme event might
follow. Proposition 3.3 provides explicit formulas for calculating the conditional probabilities of future tra-
jectories given an observed pattern. The length of the trajectory segment that we use for pattern matching
for each component is m = 20. For a bubble identified as originating from component jy (see Figure 2),
our model provides precise probabilistic forecasts of its future trajectory. The probability of the bubble
crashing in exactly k periods is given by |pj,|**(1 — |pj,|*), while the probability of the bubble surviving at
least h periods is | pj0|ah. These probabilities correspond directly to the columns labeled “Crash at h” and
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“Survive at h” in Table 5 for each component. Furthermore, the growth rate of the bubble is determined by
pj_ol, which allows for trajectory forecasting once the component is identified. These forecasted values are
presented in the “Forecast” column of Table 5.

As shown in Table 5, for jo = 1, we identify kg = 3, which means that from the start date through the
third period, the crash has not yet occurred with certainty. Consequently, computing crash and survival
probabilities for these early periods is not meaningful as the probability of a crash during this period is
effectively zero. Only beginning in the fourth period do the crash probabilities become relevant, as this
represents the earliest possible point at which the bubble could collapse according to our identified pattern
structure. For j, = 2, with kg = 1, we observe that crash probabilities become relevant immediately in
the second period, reflecting the more immediate nature of bubbles generated by this component despite its
higher persistence.

A critical element in our forecasting framework is the risk threshold parameter (set to 99% in Table 5),
which allows practitioners to customize predictions according to their risk tolerance. Specifically, analysts
using our procedure can select an acceptable probability threshold, such as 90%, to determine when a bubble
is likely to crash. When the cumulative crash probability P(crash within k periods) = 1 — |p;,|** exceeds
this threshold, the model predicts a crash; otherwise, it anticipates continued growth. This flexibility in
threshold selection creates a natural trade-off: higher thresholds (e.g., 99%) generate more extreme bubble
projections before predicting a crash, while lower thresholds (e.g., 90%) produce more conservative forecasts
with earlier predicted crash points. Figures 3 and 4 illustrate how this risk threshold impact the forecast
accuracy. For a comprehensive Monte Carlo study of the performance of this approach and its sensitivity
to the four key parameters, we direct the reader to the Monte Carlo simulation section of de Truchis et al.
(2025a).

In Table 5, we observe distinct predicted dynamics between the two latent components. The first
component (ko = 3) suggests a gradual bubble formation with forecast values escalating from 11.27 at
the start to 208.73. However, with a relatively higher growth rate, this bubble collapses in the 14th period
(when using a 99% acceptable probability risk threshold). Conversely, the second component (kg = 1)
suggests rapid build-up in crash probabilities. But with a relatively lower growth rate and probabilities
reaching 0.22 by the second period and exceeding 0.99 by the 19th period, this bubble exhibits a more
sustained but ultimately explosive episode that reaches higher absolute forecast values before crashing.

Finally, Figure 5 presents the combined forecast results at the 99% risk threshold, demonstrating the
practical implementation of our stable aggregate forecasting framework on the OVX index. The methodology
successfully captures the explosive trajectory leading to the March 2020 volatility spike, with the combined
forecast (red dashed line) closely tracking the realized path during the critical period. The identification of
the historical theoretical pattern (green line) starting in late 2019 provides the foundation for the forecast,
which accurately predicts both the timing and magnitude of the subsequent market disruption. Notably, the
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Figure 3: Forecast of the 2020 oil market bubble using the first component (p1 = 0.7989) from the OVX index filtration. The
top row displays crash probability profiles across three different acceptable probability risk thresholds: 0.9 (left), 0.95 (center),
and 0.99 (right). Each panel shows the probability of crashing at a given date (red line with circles), surviving beyond that
date (green line), the cumulative crash probability up to that date (blue line), and the respective threshold value (horizontal
dashed red line). The middle row presents zoomed-in forecasts for each threshold value, showing the real time series (blue line
with circles) and the forecasted values (colored squares) that continue until the crash is predicted to occur according to each
threshold. The vertical dashed red line indicates the end of the in-sample period (January 2020). The bottom panel situates
these forecasts within the complete time series (blue line), with the historical theoretical pattern (ko = 3) shown in green. The
colored lines represent forecasts for different threshold values: 0.9 (yellow), 0.95 (green dashed), and 0.99 (red dashed). The
vertical black dotted line marks the pattern start, the vertical red dotted line indicates the end of the in-sample period, and

the shaded gray area represents the forecast zone. The length of the trajectory segment used for pattern matching is m = 20.
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Figure 4: Forecast of the 2020 oil market bubble using the second component (p2 = 0.8470) from the OVX index filtration. The
top row presents crash probability profiles for three different acceptable probability risk thresholds: 0.9 (left), 0.95 (center), and
0.99 (right). Each panel shows the probability of crashing at a given date (red line with circles), surviving beyond that date
(green line), the cumulative crash probability up to that date (blue line), and the corresponding threshold value (horizontal
dashed red line). The middle row displays zoomed-in forecasts for each threshold scenario, with the real time series (blue
line with circles) and forecasted values (colored squares). The vertical dashed red line marks the end of the in-sample period
(January 2020). The bottom panel places these forecasts in context of the complete time series (blue line), with the historical
theoretical pattern (ko = 1) shown in green. The colored lines represent forecasts under different threshold values: 0.9 (yellow),
0.95 (green dashed), and 0.99 (red dashed). The black vertical dotted line indicates the pattern start, the red vertical dotted
line shows the end of the in-sample period, and the gray shaded area represents the forecast zone. The second component
exhibits different growth dynamics and crash patterns compared to the first component, reflecting the heterogeneous nature of

oil market volatility expectations. The length of the trajectory segment used for pattern matching is m = 20.
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Figure 5: To be commented

combined forecast from both components generates a trajectory that reaches approximately 220 before the
predicted crash, remarkably close to the observed peak of around 230 in the actual OVX series. This strong
forecasting performance validates our theoretical framework’s ability to provide early warning signals for
extreme volatility events in commodity markets, offering practitioners a quantitative tool for anticipating

and preparing for periods of exceptional market stress in the oil sector.

6. Conclusion

This paper addresses a fundamental limitation in the empircal modeling of rational asset bubbles in
financial markets by introducing a novel framework based on a-stable moving average aggregates. Traditional
approaches to bubble modeling based on anticipative heavy-tailed processes impose uniform bubble patterns
across different episodes, contradicting the observed heterogeneity in market dynamics.

Our contribution is both theoretical and methodological. Theoretically, we develop a flexible model
built on a-stable moving average aggregates that accommodates diverse bubble growth patterns and crash
dynamics . We establish that this model admits a semi-norm representation on a unit cylinder, similar to
non-aggregated moving averages, thereby enabling the forecasting of bubble episodes with heterogeneous
growth trajectories. We extend the spectral representation of stable processes to aggregated components
and derive conditions under which the tail conditional distribution can be used for prediction, showing
that anticipativeness remains a necessary condition for past-representability even in the aggregated case.
Methodologically, we develop a minimum distance estimation procedure based on the joint characteristic
function that effectively identifies the parameters of stable aggregates. Unlike existing approaches limited
to the Cauchy case with continuous support distributions, our framework extends to the general a-stable

family with discrete support, making it more suitable for empirical applications. Our Monte Carlo simula-
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tions demonstrate robust finite-sample performance across various specifications. An empirical illustration
to the CBOE OVX index reveals the presence of multiple anticipative components with distinct persistence
properties and asymmetric weights. The deconvolution analysis demonstrates that what appears as a single
volatility episode during the 2020 oil market disruption actually comprises multiple superimposed processes
with heterogeneous growth rates and crash probabilities. Our forecasting framework successfully anticipates
both the timing and magnitude of the March 2020 volatility spikes. The pattern recognition approach under-
lying our forecasting methodology proves particularly valuable, allowing practitioners to distinguish between
different sources of market stress—rapid panic responses versus slow-building fundamental concerns—and
tailor their risk management strategies accordingly. The flexibility in risk threshold selection creates a
natural trade-off between conservative and aggressive forecasting strategies, accommodating different risk

tolerance levels in practical applications.
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Table 5: In-sample bubble forecast: prediction probabilities

First component (ko = 3) Second component (kg = 1)

Date h Forecast Crash at h Survive at h  Forecast Crash at h  Survive at h
2020-01-05 0 11.2714 - - 11.2714 - -
2020-01-12 1  14.1087 - - 13.3068 0.2164 0.7836
2020-01-19 2 17.6601 - - 15.7098 0.3859 0.6141
2020-01-26 3 22.1056 0.6281 0.3719 18.5467 0.5188 0.4812
2020-02-02 4 27.6701 0.7326 0.2674 21.8958 0.6229 0.3771
2020-02-09 5 34.6325 0.8077 0.1923 25.8498 0.7045 0.2955
2020-02-16 6  43.3537 0.8617 0.1383 30.5178 0.7684 0.2316
2020-02-23 7 54.2668 0.9006 0.0994 36.0288 0.8185 0.1815
2020-03-01 8 67.9270 0.9285 0.0715 42.5349 0.8578 0.1422
2020-03-08 9  85.0258 0.9486 0.0514 50.2159 0.8886 0.1114
2020-03-15 10 106.4287 0.9630 0.0370 59.2839 0.9127 0.0873
2020-03-22 11 133.2193 0.9734 0.0266 69.9890 0.9316 0.0684
2020-03-29 12 166.7534 0.9810 0.0190 82.6283 0.9464 0.0536
2020-04-05 13 208.7292 0.9865 0.0135 97.5494 0.9580 0.0420
2020-04-12 14 0.0000 0.9901 0.0099 115.1651 0.9671 0.0329
2020-04-19 15  0.0000 0.9929 0.0071 135.9617 0.9742 0.0258
2020-04-26 16  0.0000 0.9949 0.0051 160.5139 0.9798 0.0202
2020-05-03 17 0.0000 0.9963 0.0037 189.4997 0.9842 0.0158
2020-05-10 18 0.0000 0.9974 0.0026 223.7200 0.9876 0.0124
2020-05-17 19  0.0000 0.9981 0.0019 0.0000 0.9903 0.0097
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Appendix A. Proofs

Appendixz A.1. Proof of Lemma 2.1

We first establish the C*(©) regularity of (2.14), the MDE objective function. The proof proceeds by
analyzing the theoretical characteristic function structure and establishing precise control over its derivatives
under Assumptions 1 and 2. We then show that under the condition obtained to insure that (2.14) belongs
to the C2(0) class, Assumptions 3, 6, 7 and 8 are satisfied. For simplicity, the proof is only developed for
the MAR(0,1) case although it also holds for the MAR(1,1) case.

Appendiz A.1.1. C*(0©) regularity and validation of Assumption 3
For a-stable AR(1) aggregates, let rewrite (2.5) as log ¢ x, (u,v;0) = —o® [% + |u|¥| @;(u, v; a, B)

with the asymmetry term

1 — Bi[sign(pju + v) + sign(u)] tan (Z2) ifa#l
®;(u,v;e, B) =
1+ gi [LSig“(frjuﬂ) In|pju+v| + 72518::(“) In |u|] ifa=1

Let K C © be any compact subset satisfying the uniform bounds: inf;gcx (1 — |p;]) > ¢ > 0, infopcrx o >
ap >0, supgcg 0 < M < 00, and supyc | 3| < B < co. From these assumptions, we can establish a uniform
lower bound for 1 — |p;|*. Since |p;| <1 — ¢, it follows that 1 — |p;|* > 1 — (1 — ¢')®, which is increasing
in « (since 1 — 6" € (0,1)). Therefore, its minimum value over K is attained at cg. We can thus define a
single constant 6 = 1 — (1 —¢")* > 0, which ensures that for all § € K, we have 1 — |p;|* > 0.

(¢) The derivative with respect to 7y is

92 (4, 050) = plu, v:6) - ane log x, (u, 5 6)
T

thereby leading to

’&p(u,v;ﬂ)‘ < |o(u, v;0)] - amd 10" {'p’““”a + u|0‘] (1+ 2B tan(ra/2))
oy, 1 — |pxl
< Crlotwi0) | P e = 006

where Cr = aM®(1 + 2B tan(moumax/2)) With amax = supgeg a.

(et) The derivative with respect to a is given by

Olo ) w4+ v|*
T~ o7 ['i’ﬂ o 4 Iul’l} ®;
o = |pj
o [P a2,
1—pj|*
ijU+va|pj|“1n|pj|] |pju+v[* 0%;
—1—00‘{ O + 0" | L ul*| 2
(1= 1p;|*)? ! 1—|pj|* da
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and leads the following bound

01 , , o
geYN | < M®|1n M| lpju+ o + [ul| (1 + Btan(ramax/2))
O 4]
, (1n | o, nlp.
+]\404 |:|p]u+”u| (| n|pJ;j’+vH +| Il|p]‘|) 4 ‘u|a|1n|u” (1+23tan(7rozmax/2))
[pyu+ ol "B
Ma L R e -
+ { ) +Jul €082 (Tamax/2)

Since asymptotically logarithmic terms grow slower than any positive power, we have
[T |pju+of| + [Inful| = O((|pju + 0| + [u]))  for any € >0

and hence

lpju +v|*te

5 (wi0)| < Caletw i) [ 12

a+te| __
'8a + |ul } = CoGo(u,v)

for some constant C,, depending on the compact set K.

(eet) The derivative with respect to o is

Ologpx;
Oo

|pju+ v]*

1—|ps|*

(u,v;0) = —ac® " [ + |u°‘} D, (u,v; 0, )

and implies the following bound

dp

o (u,v; 9)‘ < lo(u, v;0)| - aM™ 12 [”f””' +lu |a} (1 + 2B tan(Tamax/2))

< Calplusi0)] |32 2 e | = €,atun)

j=1
where C, = aM“~1(1 + Btan(mamax/2))
(tv) The derivative with respect to 8 only involves the asymmetry term ®,. Since 8 appears linearly,

the derivative is straightforward

Olog px, lpju+ v|* 0P,
BN (4, 016) = o [IERE e S
B 1= |psl® ﬂ

where 0®; /08 = —i [sign(p;u + v) + sign(u)] tan (%2). The resulting bound on the full characteristic func-

tion’s derivative is:
J
Do ‘ [|p»u+u|a ] T
—(u,v;0)| < |o(u,v;0 7o | L 4 |ul® -2‘tan(—>‘
Gt < lot DN el .

J
piju—+v|* o
< Caletu,us0)] |32 Ty g
j=1
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The functional form of this bound with respect to (u,v) is identical to that found for the derivative with
respect to 0. Consequently, it is also integrable for any a > 0 under the exponential weighting, and
introduces no additional constraints on the parameter space for the first-order regularity.

(v) Finally, we turn to the most critical case, the derivative with respect to pg, given by

] 0%y,

+ |ul o

alOgSDXk _ o 0 {|pku+v|a] P ey [pku+v|a
Zo Xk PR | @y — o [
Ik, Opk

O L1 ol 1— |pxl®
The first term on the right hand side is

0 [|Pku+v|a] _ alpru+v|* tsign(pru + v)u N |pru + v|*alpr|* sign(pp)
L — [px|* L — [prl|* (1—|pr]*)?

Ipx.
and we define the corresponding bound

ofullpru + v~ _ ofullpyu + v|*~*

Tl(u7v): 1_‘pk|o¢ - )

At this stage, we need Assumption 2 and impose w(u,v) = exp(—r(u? + v?)), for k > 0, to prove the

convergence. We rely on the polar coordinates of
+oo  ptoo a—1
I = / / Mexp(fn(tﬁ +v?)) du dv
oo J—oo )

1 2m oo . ' R
=5 r|cosO] - 7 |pr cosO +sin O] e rdr db
o Jo

1 2m oo ]
- 5/ | cos 0| |py, cos @ + sin 6> 1 (/ potlo—kr dr) a0
0 0
with u = rcosf, v = rsinf. This decomposition reveals that the radial integral converges for av > —2

> a+1 — k72 o F((OZ + 2)/2)
/0 r e dr = otz

and the angular integral, near singularities 8y where py cos 8 + sin = 0, converges for a > 0

Oo+e 2+ /1 2\ya—1_«a
/ |pk cos 0 4 sin 0>~ 1do = (Vi+p)? e
0

[e%

< 0
O—E

with € > 0 an arbitrary small constant. Therefore for any « € (0, 2),

e
_r . < .
’6pk (U,’U,g)‘ — CP|SO(U7U79)|

|a71

fullpwu + 070 gt oo

e L e eXeA Ry (A1)
where C, = 0%(1 + 2B tan(maumax/2)), all terms being integrable for o > 0. This completes the first-order
derivative analysis with precise bounds, establishing uniform integrability that enables application of the
dominated convergence theorem for C* regularity when a > 0.

Establishing C? regularity lies in proving that second derivatives exist and are bounded. As revealed by

the first-order analysis, the most critical case is related to the p; parameters. Hence, we only detailed our
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analysis for 9%¢/(0pr0ps), using the same polar coordinate approach. Starting the expression in (1v) we

have

« 82 1Og @Xk

2 1
09 _ (9 .ﬁa%+¢(u7v;g).ﬂk ]
op;,

377;% 37% Ipx
The first term on the right hand side is bounded by the product of first-order bounds established in (A.1).

The second term is

Plosgse __pe L2 [l ol
9} 9pF [ 1= |pxl*
_gga 0 {lpww] 0%
Ipr [ 1= |pxl™ | Opx
—o“ |:|pku+v|a | |a:| 82(1)16
1= [px|® 9}
and involves
0? {|pku+v|a] 1 0?
- = —_— u-+v «
Opp L1=lpul* | 1= lpxl® 6pi‘pk |
20| pi|* sign(px) 0
+ =—lpku +v[*
(L—lpkl*)*  Opk
ala — 1 a—2 + 20[2 2a—1 1_ «
et + 0] ( )|kl o1/ (1 = |pkl®)

(1= [pk|*)?
showing that the most critical derivative is

82
aT)g\Pku +o|* = ala = 1)u?|ppu +v[* 72
k

and the most singular terms are of form

ala — Du?|pru + |22 < ala — Du?|pru+v|*2
1— |pw|® - o

To(u,v) =

Again, we invoke the weight function w(u,v) = exp(—r(u? +v?)) prove convergence using polar coordinates

of

+oo +oo -1 2 a—2
I = / / afa = Du gpku il exp(—k(u? 4+ v?)) du dv

1 2 e’} .
= [ [T o0 pcost ol e drds
0 0

-1 2m [e9)
= % / cos? 0| py, cos  + sin A2 (/ potle—rr® dr> do
0 0

The angular integral becomes

2
J, = / cos? 0| py, cos 0 + sin 6 ~2d6
0
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and the singularities occur when pg cos@ +sinf = 0, i.e., when tan 6 = —p;. As only two singularities exist
over the interval [0, 27), let 6y, = arctan(—py) be one such point. Near 6y ;, define ¢ > 0 arbitrary small

and the neighborhood B; = (6p,; — €,60,; + €) such that we can decompose J, as

Jo = / cos? 0ok 0050+Sin9|a_2d9+ cos? 0| px c050+sin9|a_2d9:IB +1Ip
B1UBo

~/[0,27r)\(BluBz)
Notice that cos? # < 1 and that near singularities, the local expansion is |py, cos 6 +sin 0| ~ |0 — 60 ;|\/1 + p3.
Then, we see that

Go,i+e

0o,i+e€
/ cos? 0| py, cos 0 + sin 0|*2dh < /
0

0,i—€ 0o,i—¢

a—2 €
= (\/14‘[%) / |T|a_2d7', 7—:9—90’2‘

a—2 €
(1 /14 pﬁ) . 2/ 79724
0
201 \/7 a=2
= 1 2

converges if and only if & —2 > —1, i.e. a > 1. Hence, the following bound applies

a—2
1-(9—90,i| 1+pi> do

4e1 oy (@—2)/2
Ip < o (1+p7)

Now observe that on the compact set D = [0, 27)\ (B1UBz), the integrand of .J,, is a continuous and bounded
function such that supgep {cos? 8]py, cos 6 + sin 6]*~2} < oo and hence I is bounded by (2m — 4¢)Mp. For

a > 1, the complete bound for J, is given by

4e>~1
a—1

(a—2)/2
)

Jo < (1+ o + (27 — 4e) sup {cos” 0| pj, cos § + sin 6>} .
0D

Having established uniform bounds on derivatives, we now can apply the dominated conver-

gence theorem to justify differentiation under the integral sign in (2.14). For any parameter 6; €

{o,p1y-.,ps,T1,..., 75, B}, we have shown:
0 2 dp
JE— — . < _ . .
g0 00) =l 300 < 2l 1) = i) [ 5 a0:0)
0
< 2l )] + ot O | 32 v 1:0)

Since |@n, (u,v)| <1 and |p(u,v;0)| < 1 and by the established uniform bounds

dp
00;

(1,150)| < €06 (uv)
where G;(u,v) are functions with

“+o0 “+o0
/ Gi(u,v)w(u, v) dudv < oo,
oo I

o0
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the dominating function is
Hy(u,v) = 2max C;(0)G;(u, v)w(u,v)
Since fjoos fjof Hi(u,v) dudv < oo, the dominated convergence theorem applies, and

+o0 +o0
8DX / / a(z [ (u,v) = (u, v;0)Pw(u, v) dudv,

showing that (2.14) is C1(©) for any a € (0,2) and the weight function as w(u, v) = exp(—x(u? + v?)) with

K a positive constant. Regarding the second derivatives, for o > 1, we have established:

82
62

2 (u,v; 9)’ < CP(0)GP (u,v)
where GE,Q)(u, v) is

G (u,v) ~ Jo(u,v;0)]| - [u®[pru + 0|2 + O(Jul* + [v]*)]
For a > 1, we proved

+oo  ptoo s o
/ / u?|pru + v 2e ") dy dy < oo
—00

the second derivative of (2.14) exists when

' o < Ha(u,v)

- _ . 2
89289J |90n(u,'0) SD(U,'U79)|

where Hs(u,v) includes terms of form

82
00;00;

Oy
00;

99
90,

+2

Hj(u,v) <2 ’

multiplied by w(u,v). For o > 1, all these terms are integrable, so
+oo +oo
/ Hy(u,v) dudv < o0
— 00 —0o0
Therefore, the dominated convergence theorem applies for second derivatives, showing that (2.14) is C?(©)

for any « € (1,2) and appropriate exponential weights. This result proves that Assumption 3 holds.

Appendiz A.1.2. Validation of Assumption 6

The Assumption requires 6 the random sequence K (z; ) defined in (2.17) to be measurable and bounded.
Since trigonometric functions and the theoretical characteristic function ¢(u, v;8) are continuous (and thus
measurable), the entire integrand in (2.17) is a measurable function of x for each fixed (u,v,6). By the

Fubini theorem, the integral of this function with respect to (u,v) is a measurable function of z. Next, we
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demonstrate that K (z;6) is uniformly bounded with respect to . From the natural bounds of trigonometric

functions, | cos(uz,+1 +vz;)| <1 and |sin(uz;y1 +ve;)| < 1, and since |¢(u,v;0)| < 1, we have

K(x;0)] </ / { | cos(uxji1 + vaj)| + |Re ¢(u, v;0)]) ‘aRewa(;hv,e)‘

Olm ¢ (u,v;0)
06

<2/ / <’3Regpuv0)‘+'almgpa(g,v;ﬁ)’)w(u’v)dudv

<4/ / ‘8@111}0 ’ w(u,v) dudv.

The first-order analysis in Lemma 2.1 established that for each parameter component 6;, the integral of the

+(|sin(uzjpr + vay)] + |Im p(u, v;60)])

| wtuo) dudo

derivative’s is finite, i.e.,

/ / ’&puvﬁ ‘w(u,v)dudv<oo.

Therefore, K (x;0) is uniformly bounded, and Assumption 6 is satisfied. a

Appendiz A.1.53. Validation of Assumption 7

This assumption requires that the matrix ¥(6y) be nonsingular and that the second derivative %
be uniformly bounded by a w-integrable function. The uniform boundedness follows directly from our
C?(0) regularity analysis in the proof of Lemma 2.1, which established that for a € (1,2), all second-order
derivatives are w-integrable over the compact parameter space O.

For the nonsingularity of X(6y) = [ [ g‘g gép,w (u,v)dudv, we must show that the functions dp/90; are
linearly independent in the weighted L? space. This is equivalent to showing the linear independence of
the logarithmic derivatives g;(u,v;8) = 0log/d0;, since dp/00; = ¢ - g; and ¢ # 0 almost everywhere.
The independence of the g; functions stems from their fundamentally different functional forms, particularly

concerning their singularities and asymptotic behaviors. The key distinguishing features are:

ausign(pru +v)|pru + v|2!

Gy, = —o%my + O kquvo‘]
= ot | wt e (s +v])
ol n ool -
Go = 03 [ P E B g |+ O(Jul + 1l")
J
7

95 = —itan (E) e Zﬂ;x |:ij + ’U| 51gn(£ju + ’U) + |u|asign(u):|
2 r 1= pjl

9o = = log p(u, v; 0)
g
«

9r, = — log PXp (UJJ; 9)
T

A linear combination ). ¢;gi(u,v;6y) = 0 must hold for almost all (u,v). The unique, non-overlapping
lines of singularity for each g,, imply c,, = 0 for all k. The distinct logarithmic asymptotic growth of g,
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implies ¢, = 0. The purely imaginary nature of gg ensures cg = 0. Finally, the distinct dependencies on the
components j for g, and the various g, ensure their mutual independence, forcing their coefficients to be
zero. Thus, all ¢; must be zero. Since w(u,v) > 0 everywhere, this linear independence of {g;} implies that

of dp/d0; in the weighted L? space, and therefore $(6) is non-singular. a

Appendiz A.1.4. Validation of Assumption 8

Validation of Assumption 8, which is required to apply a central limit theorem for dependent processes,
rests on demonstrating that the temporal dependence of the sequence {K;} decays sufficiently fast. We
establish this result by showing that the aggregated process (X;) is @-mixing, a property that is inherited by
the sequence {K;}. Each latent process (X ) is strictly stationary, Markovian, geometrically ergodic and
hence strongly mixing. Therefore, for each latent component j, there exist constants C; > 0 and A; € (0, 1)

such that its mixing coefficients satisfy &;(h) < Cj)\h Vh > 1. Since the latent processes are mutually

Vi b
independent, the mixing coefficient of the aggregated process X; is bounded by the sum of the individual

mixing coefficients
J
ax(h) <> ax;(h).
j=1

In particular, letting p = max; [p;| < 1, there exist constants C' > 0 and X € (p, 1) such that ax(h) < CA!
and hence A} is also @-mixing. As any measurable function of a strongly mixing process is also mixing,
with a decay rate at least as fast, the sequence K; inherits the &-mixing property from A;. This ensures
the convergence of E(Ky|F_,,) to E(Kp) = 0 in mean square. Moreover, as for a bounded and &-mixing
sequence, the norms of the martingale differences v; = E[Ky|F;] — E[Ky|F;_1] also decay geometrically,

Assumption 8 is satisfied. a

Appendix A.2. Proof of Lemma 3.1

Denote X = (Xjt—my---, Xjts Xj 41, .-, Xj+4+n) the paths of the moving averages (X;,), for j =
1,...,J. The X, ’s are independent a-stable random vectors with spectral representations (I';, H?)~ We

consider only the more delicate case « = 1 and ; € [-1,1] for j = 1,...,J. Because of the independence
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between X1 4,...,X 1, we have with a = 2/7

J
E |:6i<'u.,Xt):| _ ]E[ei<u,a > wJ-Xm} _ H B {eumju,xj,t)}
=1

= H exp { - /S (|<a7rju, s)| +ia(omju, s)In [(om;u, S>|)Fj(d3) +i{om;u, [.Lj0>}

j=1

=ex — u, 8)| + ia(u, s) In [(u, s) 0“71'0‘1" (ds)
p [(u, 8)| + ia(
SnL+h+1

#i3 ((twomn®) - aom o) [ o SIIC) }

j=1
Focusing on the shift vector, we have
J
Z ((u7 omip;") — aom; ln(aﬂ'j)/ (u,s)T; > Z omj(p; —aln(om;)f;)),
j:1 Snz+h+1
I =

with fi; = (@) and fije = [q o seL'j(ds), £ = —m,...,0,1,...,h. Using the form of Tj, i.e.,

2ves; Duke wj,vlldj,k||e5{ va, } we get

T2 ke

Z Zwy19|| Jk”eﬁfl]k-w ﬂjz 3, k405 :—m,...,

fij.e :/ sel'y(
Smtht1 9€ES, kEL kEZ

Hence, fi; = ;> ¢z djk, and using the form of H? as given in (3.5),

J
Zmrj( ; —aln(om;)f;) ZUWJ<—aB]ZdJk1n||d]k||e aln(om;) B]Zdj k)
j=1 kEZ

kEZ

=—a Z Z om;fid; i n|lom;d; k.

j=1kez

=l

J
E{ei(%Xt)} :exp{ _/s (|(u 8)| + ia{u, s)In|(u, s )ZU(XWQF (ds) + i(u, p°)
m—+h+1 j=1

and the random vector X is 1-stable with spectral measure

ZUO‘?TOT =0 ZZ Zwmﬂr ”dj,kH 5{ Id; 1, }’

Therefore,

19€8: keZ
e ;. kle

and shift vector as announced in the lemma.
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Appendix A.3. Proof of Lemma 3.2
With the usual notations, let the X ,’s be the paths of the moving averages (X, ,)’s and let I';, j =
1,...,J, their spectral measures on the Euclidean unit sphere. Let I' be the spectral measure of X;. By

Lemma 3.1, we have:
J
I'=0" Z ;L.
j=1
Thus, by Proposition 1 of DFT, in the cases where either o« # 1 or X, is symmetric, the vector X, is

representable on C I thy1 if and only if

I‘(K”'”) =0 e KII H =0

H'Mk

— rj(K”'”) =0, Vji=1,...,J,

where the last equivalence follows from the fact that % > 0 and 7§ > 0 for all j = 1,...,J. Given that
the I';’s are the spectral measures of paths of non-aggregated moving averages, we can apply the arguments
from the proof of Theorem 1 in DFT. Specifically, for each j, the condition I';(K 1) = 0 is equivalent to
the representability condition (3.4) holding for the sequence (d; )i with parameter m. Therefore, X is
representable on CH I 4y if and only if (3.4) holds with m for all sequences (djx)x, j = 1,...,J. For the
case a = 1 and X; asymmetric, we need to consider the additional condition involving the shift vector u°.

From Lemma 3.1, we have:

p’ =—lja= 1}7227"]6] dj i Inlom;d;klle-

j=1keZ
By Proposition 1 of DFT, when a = 1 and X is asymmetric, representability on Cln hy1 Tequires both:

1. T(K ') = 0, which as shown above is equivalent to (3.4) holding for all sequences (d; x)x;
2. The additional condition (3.6) must hold.

To verify condition (3.6), we need to show:

Z Hdk”e

keZ

< +00.

In (|1l

However, in the context of stable aggregates, this condition must be interpreted in terms of the aggregated
coefficients. Since X; = o ijl ;X j +, the effective coefficients are combinations of the individual sequences
(dj.x)x. The condition (3.6) in the aggregated case becomes:

> ldelle

kEZ

< 400,

tn (|l /1.

where dj, now refers to the k-th vector in the aggregated representation. Given the linearity of the aggregation
and the fact that the condition must hold for each component individually (as each X ;; must satisfy the
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representability conditions), the condition (3.6) for the aggregate is satisfied if and only if it holds for all

sequences (d; i)k, j =1,...,J, with the same parameters m and h.

Appendiz A.J. Proof of Proposition 3.1

If a # 1, we have by Theorem 1 and the proof of Proposition 3 of DFT,

(X;) past-representable <= I m >0, (3.4) holds with m for all sequences (d; k)
— Vj=1,...,J mgy,; <400

< Vj=1,...,J, (Xj;) past-representable.

For a given series (d; )k, (3.4) holds with m > mg ; and does not hold with m < mg ;. Regarding the last
statement, we know that for (X;) (m, h)-past-representable, (3.4) holds with the same m for all the sequences
(djx)k, 3 =1,...,J. This holds if m > maxmg ; and cannot hold if m < maxmyg ;. In the case where
«a = 1, again by Theorem 1 of DFT and den(J)ting generically by X; a vector (X:_m, ey Xy X1, - Xean)
of size m + h + 1,

X; past-representable

X, 818 and (3.4) holds with m for all sequences (d; k)
< dm > 07 h > 1, or

X, asymmetric and (3.4)-(3.6) hold with m, h for all sequences (d; 1)

X, S1S
or
— Vji=1,...,J, mo; <+oo,anddm >0,h >1,
X ; asymmetric and (3.6) hold

with m, h for all sequences (d; k)

We conclude again by noting that the necessary condition (3.4) holds for m > maxmy ; and is violated
for m < maxmyg ;. Now, for part («), let || - || be a semi-norm satisfying (3.3) jand assume that & is
(m7h)—past—ﬂrepresentable for some m > 0, h > 1. We need to establish the spectral representation of
the vector Xy = (Xi—m, ..., X, Xeg1, ..., Xign) on Cﬂihﬂ. From Lemma 3.1, we know that the spectral

representation (T, u°) of X; on the Euclidean unit sphere S,, 11 is given by:

J
D=0 > > wiomildisls { 9d, } (A.2)

j=19€8, keZ de)k”e

07 1fa7£1

J .
—2 i Yoz miBidjp In lomid ke, ifa =1
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To obtain the spectral representation on ol we apply the transformation established in DFT for

m~+h+17
changing from Euclidean to semi-norm representations. By Lemma 3.2, since A} is (m, h)-past-representable,
the vector X is representable on Cllr;‘_!_h 4+1- The transformation from the Euclidean representation to the
semi-norm representation proceeds as follows. Let KIlI'l := {s € S, ;111 : ||s|| = 0} be the kernel of the

semi-norm on the Euclidean unit sphere. Since X is representable on C' Il we have T'(K ') = 0. Define

m-+h+1°
the projection mapping 7. : Smint1 \ Kl — C’lll“_l_h_s_l by:

T (s) = ﬁ (A.3)

By Proposition 2 of DFT, the spectral measure on the semi-norm unit cylinder is given by:
) = [ sloors) (A1)
T

for any Borel set A C cll

ma-he1- Since the original spectral measure I' from (A.2) is concentrated on atoms

of the form {¥d; /||d; x|}, and since ||[9d; /| dj k|le]le = 1, the transformation yields:

J
. o [ —Q ll9d7
PH) = 37 5 S wsomotldzalz 17 L (732 ) (45)
7>

Jj=19€8S1 k€Z

where we use the fact that ||[¥d;i/||djkllclle = 1 and Ty (¥d;r/||djklle) = Vdjr/||djk|l. Applying this

transformation to (A.2), we obtain:

J
F“H = Uaz Z ij71971'?||dj7k”a5{ ﬁdj,k } (A6)

j=19€S1 k€Z
’ ' Il

For the shift vector in the case @ = 1, the transformation yields:

J
. 20
plll = - DO miBidikIn lom;d i (A7)
j=1keZ
This completes the proof that the spectral representation (I'I'l ull) of X; on C’ﬂihﬂ is given by (3.5)
with the Euclidean norm || - || replaced by the semi-norm || - ||, and with the scale parameter o explicitly

included in all relevant terms.

Appendiz A.5. Proof of Corollary 3.1

The equivalence between (c¢) and (cee) follows from Corollary 2 of DET. From the proof of the Corollary in
DFT, we also know that, for any 7, if mg ; < 400, then (3.6) holds for the sequence (d; 1)y for any m > mg ;.
For the aggregated process &y = o Z;I:l m; X+ with o > 0, the effective moving average coefficients for each

component j become om;d; rather than d; . However, the past-representability conditions depend only
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on the pattern of zeros and non-zeros in the coefficient sequences, not on their scaling. Specifically, for

condition (3.4), we require:

vk € Z, [(awjdj,k+m, omdig) =0 = YU<k—1, omd= 0]
Since o > 0 and 7; > 0 for all j, this is equivalent to:

Yk € Z, [(dj’ﬂm,...,dj,k) —0 = W<k-1 dy= 0]

Thus, the past-representability condition for the aggregated process is unchanged by the scaling factor o.

For the additional condition (3.6) when a = 1 and the process is asymmetric, we need:

> llomid;klle

keZ

In <||0'7Tjdj7k

/omidselle) | < +oo.

Since ||om;djk|le = omj||dj k|le and the norm scales homogeneously, this becomes:

> omilldklle

kEZ

tn (l1d;.cll/ ]l )

< +400.

Since om; > 0 is a finite constant, this condition is equivalent to:

> ldille

keZ

< 00,

tn (Jisoell/ il )

which is precisely condition (3.6) for the unscaled sequences. Therefore:

supmg; < +00 = (3.6) holds for any sequence (d; 1), for any m > myg ;
J

= (3.6) holds for any sequence (o7;d; )i for any m > maxmyg ;.
J

Thus, (wet) implies (¢). The reciprocal is clear. Regarding the last statement, notice that if X; is (m, h)-

past-representable for some m < max my_;, there would then exist some j such that m < mg ;. Hence, (3.4)
J

would not hold with m for the particular sequence (o7;d; )&, which is impossible by Lemma 3.2, since the

past-representability depends only on the zero pattern, not the scaling.

Appendixz A.6. Proof of Proposition 3.2

By Proposition 2 of DFT, the asymptotic conditional tail property states that for any Borel sets A, B C
cll . with TI (8(A N B)) =TI(8B) =0, and TII(B) > 0,
rllianB)
ll-I
Po (X, A1B) =2 TI-(B)
Setting B = B(V) =V x R", we have

rlHiAn B(V))

Pl (Xth‘B(V)) 2 e0 CTHIBV))
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From Proposition 3.1 (u«), the spectral representation (Il pll) of the vector X; =
(Xi—my ey Xy Xia1y oo, Xewp) on C‘ I Yhae1 is given by equation (3.5) with the Euclidean norm | - [[c

replaced by the semi-norm || - ||. From Lemma 3.1, the spectral measure can be written as:

J
rhl=o3" % ij,ﬂ}lﬂdjyk“a‘;{ vd; i }’

=1 9€S, kEZ
ITIUESEE dj k|l

where d; . = (dj k+m>-- > djk, djk—15--->djk—n), Wi = (1 +96;)/2, and if d; ;, = 0, the term vanishes by
convention from the sums.

Now, we compute the numerator and denominator separately, we start by the numerator: Tll'l(ANB(V))

Since B(V) =V x R = {s € Cﬂllhﬂ : f(s) e V}, we have:

ANB(V)={seA: f(s)eV}.

The spectral measure TlI'l charges only the points of the form for (9,4,k) € S x {1,...,J} x Z.

lld; k”
Therefore:
rAnBV) =Y wi oS ldii*6 ¢ yd;, \ (AN BV)
JEL s keR {Ildj,kll}
=o% Y wienfldl®
o, DIE):
Ta €ANB(V)
_ o0 ) w8 1
(9,5,k):
Vd kH cA and 19f(d] k) cv

lId; lid;,

This can be written as:

)

For the denominator T'l'l (B(V)), we proceed as follows:

rBw)) = o> Z wj 975 || dj k

;.1 €B(V)

‘ «

This can be written as:

Tl (Bvy) = ol ({ ﬁjj,k ol ﬂf;élj,k) . v})
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Note that the factor ¢® appears in both the numerator and denominator, and therefore cancels out in the

ratio:
DY (9,,h); wj, o7 |dj k||
9d d.;
TIH(ANB(V)) TikkreA and Hf;j;ﬁ)ev
LIiB(v)) Y (o w; o\ dj k|
ﬁf(dj’k)GV
lIdj k|l

i {ﬁdﬂk ca: Mdin) V}
;x| .kl
9dik o ol Of(djr) '
Tl {]’ec” I Udi)
( ldsell = ]

This establishes the desired result. The conclusion follows by considering the points of B(V) and AN

B(V) that are charged by the spectral measure I'l'l given in equation (3.13). The presence of the scale
parameter o does not affect the asymptotic conditional probabilities as it appears multiplicatively in both

the numerator and denominator of the ratio, thus canceling out in the final expression.

Appendix A.7. Proof of Lemma 3.3

By Proposition 3.1 and setting general scale parameter o > 0, we have

J
rlh=3%"%" Zwa‘w"ﬁﬂdrknaé{ ik }

j=19€S1 kEZ ld; kl

withd;;, = (p§+m]1{k+m20}, cee p?ih]l{k,hzo}) forany j=1,...,Jand k € Z. Thus, forany j € {1,...,J}

0, if k<-m-—1,
dig =19 (P, 0 1,0,...,0), if —m<k<h,
Pj dj);“ if k> h.
Therefore,
I 9D SR [ S IS sy + 2o AN i ]
j=19€S; k=—m {“dﬂk“} k=h {p’“w}
Moreover,

J +o0o

> 3w L Il
=1 9e5, b—h entp; Taj pT
3 o djnl® [Zm“(k R Z 50%) ] {}

19€5; T pll

M= M-

> oo ‘a||dj,h||“@j,v95{ od; }

19€5; Ta; nl
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Finally, noticing that for Kk = —m and any j € {1,...,J}, d; = (1,0,...,0),

h—1

J r _
. a,_a « Wy, a
rhi=>_ > o°n %ﬁ§:”%M|qﬂ@ﬁ}+1_byﬂ%ﬂ|qﬁ@ﬁﬂ

i=19€S L k=—m J
e, lld; x|l lld;nll
i h—1 @
a Qo « j, 0 a
- Z Z Ty Wiw (6{(19’0,~~-’0)} + Z ldjll*0 ¢ ya. & > + ﬁ”d}h” dOc9d. h
j=19€S L k= —m-+1 { J: } |05 { 7, }
lldjell lldjnll

J h—1 _
o« « W;,9 o
= Z [wﬂd{w,ow’o)} + Za 7§ (wjﬂg Z lldj.ll 5{ 9d,; 1 } + kudjh” 5{ dd; })]7

k=—m+1
" djkll dj.nll

s J
where we have used the definition wy = 7_, 07 w; .

Appendix A.8. Proof of Proposition 3.3

Lemma Appendix A.1. Let Tl'l be the spectral measure given in Lemma 3.3 with o > 0 and assume that

the p;’s are all positive. Letting (9o, jo, ko) € I, consider

o 1= {ﬂldj/,k" ) ﬂ/f(dj/,k/) _ ﬁof(dj(hko)
lldjr el el l[jo ko l

Form>1, and 0 < ko < h, then

h:{%%wﬂ ogygh}
o]

Form >1, and —m < kg < —1, then

for (9,5 K e I} )

{%@Mﬁ, Fommt1<ky<-—1
deo,koH

{&ﬂW%}z{wmanme if ko=-m

For m =0, then

_fYdiw
IO_{de/,k/H' (.7ak)6{1,...,J}X{l,...,h}U{(O,O)}}.

Proof. The key observation is that the parameter ¢ > 0 appears as a multiplicative factor in the
spectral measure T'lI'l but does not affect the normalized directions ¥'d;s s /||d;/ 4| or their projections
V' f(d; 1)/ ||djs k]| This is because o only scales the overall magnitude of the spectral measure but does
not change the geometric structure of the charged points on the unit cylinder. More precisely, from Lemma

3.3, the spectral measure takes the form:

J h—1 _
: Wy
rH =0t 3 Juodoa.on + Xonf (w0 3 de,knaé{ ﬁdj,k}ﬂijw”djvh““&{m})1’
Ve =t hEmm il dn
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The factor ¢® multiplies the entire spectral measure uniformly, but the support of T'll'l (i.e., the set of points
where I'll'l assigns positive mass) consists exactly of the normalized directions:
dd; i,
" ldjull
Since the condition defining I involves only the equality of normalized projections:
V' fdjw) _ Vof(djoko)
e k| l[ oo

and since these normalized directions are independent of o, the analysis proceeds exactly as in the case

supp(I'h) = {(19,0,...,0) c9eS,je{l,...,.Jhke {—m+1,...,h}}

o=1.
Case m > 1 and ko € {0,...,h}
If k" € {—m,...,—1}, the (m + 1)-th component of f(d;: ;) is zero, whereas the (m + 1)-th component

of f(djy k) is pfg # 0. This geometric relationship is unaffected by o.
Necessarily, 0" f(djo x)/l|djr || # Do f (djo o)/ | djo ko || and

/ s/ ’ / ! ! y
I = {Mﬂ ke V) Oolivko) g (g0 po) € (-1, 41) x {1, T} x {o,...,h}}.
e 1w 1o ko

Now, with &' € {0,...,h}, we have that

f(dj/JC') = (p.I;’+m7 e 7p§/+1ap?’)7
k ko+1 k
f(djo,ko>:(pjoo+m7"'7pj[;)+ ’pjt?)’

and by (3.3) we also have that

h
’ ’ 1 —N—
I pell = 1105 ™ s o 0,0, )l
k ko+1 k
o kol = [1(0507™, o P50 05,0, ).
h

The key observation is that these norms and the resulting normalized directions are independent of o.

Thus,
V' f(djr k) _ Dof(djo ko)
el Nl o o
ol f(djeo)  Dopi f (dio.0)
> & = k

lpi ¥ lldjr ol |pjol ol 0l
V4 4

V'pj Yopj,

= = {=0,....m
ldjr ol lldjooll’ Y

£
?9/190||dj0,0|| _ (Pm) , £=0,...,m
I oll Py

pjr = pj, and ¥y =1

!

j'=jo and ¥ =4y,

11
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because the p;’s are assumed to be non-zero and distinct.
Case m > 1 and ko € {—m,...,—1}
By comparing the place of the first zero component, it is easy to see that

Vf(dj ) Dof(djok)
1w | l[jo, kol

:>k/:k'0.

m+1
f(dj’,k/) = (p§’+mv~~'7pj’71307"~a0)7

f(dj07k:0) = (p;?g-i_mv <o Plhos 1707 cee 70)3

m+1
and we also have that
m—+1 h
4 —
delﬁklllz||(p_l;/+m7"'7pj/’1707"'70707"'7O)||7
k
ool = 1(05™, -, 9405 1,0,...,0,0,...,0)]].
—
m—+1 h

As k' = ky < —1, the condition becomes:

ﬁ/f(dj’,k’) _ 190f<dj07k0)

Idjwll N onoll
¥ pt, Yop’
e 2l TPy gk, and K = ko
ldj kol o,k l

d. o\t
— 7_9/?90” jo,koH = <P]0> , £=0,...,m+ kg, and k/:ko-
dj kol \ oy

Now if —m+1<ky < —1,

£
59, Woll _ (””) , £=0,1,...,m+ko, and K = ko

I kol — \ oy
— ¥ =19 and j' =jo and k' = ko.
If ko = —m, given that (o, jo, ko) € T = Sy x ({1,...,J}  {=m,...,—1,0,1,...,h} U {(0, fm)}),
then necessarily jo = 0. Furthermore, as k¥’ = kg = —m, we similarly have that j/ = jo = 0 and thus
dj' ko = djy kg = do,—m = (1,0,...,0).

Hence

d. N\ ¢
19/190”307’“0H:(p30> , £=0, and ¥ =ko=—m and j = jo =0,
[l o | pi

<~ 19/:’[9(] and ]ﬂ,:ko:—m and j/:j():O

Case m =0
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If /{0 S {1, .. ,h} then f(djo,ko) = p?oo and by (33), ||dj0,k0|| = |pj0|k0. ThU.S, ﬁof(djo,ko)/||dj0’ko|| = 190.
If ko = —m = 0, then jo =0 and f(djo,ko) =1 and ﬂof(djo,ko)/dekaH = 190.
The same holds for (¢, j’, k") € Z and we obtain that

Vf(dj ) Dof(djok)
[l x| [l ko |l

== ¥ =1,.

Proof. By Proposition 3.2,

'd.r i’ k!
Tl {Mj’keAMk: P L) VO}
I It 1l Tl
Pl (Xt,Aﬂ,j,k’B(VO)) a0 v'd vy i) |
T ¢ == e el L ol
<{||dj,,k/eo’"+h“ Tl <

Focusing on the denominator, we have by (3.16)

[ d 9 f(dyr ) Wl [ ds . VF(dyr)  Iof(djyw)
i { SO N0 .77 RO () IR TN (B A T s i) _ jo.ko
Iyl — T ldg | ’ Idjr gl — " d el okl

We will now distinguish the cases arising from the application of Lemma Appendix A 1. Recall that we

| ﬁj and

assume for this proposition that the p;’s are positive. Thus, sign(p,;) = 1 and ,6’] ﬁJ T |'ija>

Wj9 = wjg in (3.15) for all j’s and ¥ € {—1,+1}.
Casem > 1and 0 < ko < h

By Lemma Appendix A.1,

G SV w : Vf(djrw) _ oS (djoko)
Tl {m coll jra) _ Dof(djo.ng
djr o] A ldjr |l o kol
_ i {190‘11'0»% ng/gh}
lldjo.
h—1
o a 9

=0 Ty |f%o Yo Z ||djoyk ” ]|0 O|a|| ]o,hH ]

By (3.3), for k' € {0,1,...,h}

K’ E'+1 K
o prll = (P55 sl T 0,0, 0)]
h
k'—h h h+1 h
= 1pjol " Nt Pl 0,0, 0)])

A
=150l " ldjon
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Tl {Wd;%k' coll . U die) _ ﬁof(djo,ko)}
sl 7T ld | ool
h—1 / 1
= 0T Wiy 00|l l Z ‘Pjo‘a(k R+ W]
k'=0 - p]0|
. |—ah
= Jaﬂﬁ)wjo,ﬁo ||dj0,h||a1|p_m||pjo|a'

Similarly for the numerator in (A.8), by (3.17),

il i O f(djr pr)
Tl {j’eA~ : i)
Idgal 07 gl 0

Yod;, i
= -l <{||(Oijj[;;/k|| €Ay 0<k < h})
ok

Yod;
r|-|<{”;_ﬂ;ﬁ}>, if j=jo and 9=,
- J05

INRI() if j#jo or O # o,

Uaﬂ-%wjoﬂ% deo,h”alpjo|a(k_h)6{190}(19)6{jo}(j)7 if 0<k<h-1,
1 ) .
o Wi 9, deo,h||°‘W5{ﬂo}(19)5{jo}(ﬂ)v if k=h.
0
The ¢ terms cancel out in the ratio.

Casem >1and —m < kg < —1
We have by Lemma Appendix A.1

: V'd; g : Vf(djrw) _ Vof(djoko) A S Podjo k
Tl {Jv’“ echl . LR doko) U} pllill [ Yo%doko L)
[yl — T ldy | ll o,k [l o,k

If—m—f—lgk‘og—l,

Yod. &
]_—‘”H 0%j0,ko e e’ X d. a
deo,koH o 7Tjow]oﬂ%” ]okaH )
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and

[ Vdy 0 f(dj i)
Ll {MgA Vi)
Iyl =70 gl °

Jod;
_rhi{ 4, ., m{ 0 Jmko}
v deo,koH

Jo,Ro

ril®), if j#jo or 0# Uy or k# ko,

= 05 Wi 00 o oo | O 903 (9)9 150y (1) ko y (K).-

If kg = —m, then dj, k, = do,—m = (1,0,...,0), and

Yod,;
'J0,R0

and

(9 O f(dyr 1)
Ll { gk g Vi)
sl 07 gl 0

od,
_ i 4, -m{ 0 Jo=ko}
” ||dj07k0||

_ { Fl‘H <A197j7kﬂ{ﬂ0(1707"'70)})7 if 19:1905 and k= k?o =—-m, and ,]:,]0 =0

Tl (@), if 9#9y or k+# ko, or j+#jo

= 0" W, 0494} (9)0(56} (5)0 (ko y (K)-

Again, the 0 terms cancel out in the ratio.
Case m =0
By Lemma Appendix A.1, as the p;’s are positive

_ Vdir , Vf(dj k) Yof(djgr,)
rl {M coll . i) _ Yo (do o
djrgor|| — HhA ;x| o ol

_ i ({ﬁ’ddk' echl, o (LK) e{l,..., Ty x {0,...,h}U {(o,m}})

54



Given that wy, = Y7, _; 7%wjr.9, and [|dj p || = |pyr|¥', for any 1 < j' < J, 1 <K < h,

J

p||-|<{19'dj@k' coll . ﬁ’f(djf,k/)ﬂof(djo,ko)}>

dj || — R ekl I djo .k |l

d; p||®
= 0wy, + o Zﬂ—/wjfﬁo ZHd/k,H“ ”jihna
o= 1—1pj|
=0° Zﬂ/wjfﬁo 1+Z|pj |k 4 |p]| ‘|
L= oyl [pyl
=0 7Tq/w'/19 J —+ J
; / J*°[1—|pjf|a e

k=1 = lpyr|
1
_U ZW/‘LU] 1901_|pj|0£

Similarly, by (3.17),

V'djs g O f(djpr)
Tl {J A PR A e LAY V7
Idg ol 07 gl 0

Dod,: ,
:pu<Awﬁm{@f;<¢LWp M%geﬂwwjbdQHWMUﬂQm*>
7"

Jod
i 1 Yo%k -
_ Iy ) ) TU=ve

rl-(@), if 09,

g% erj/zl W]Q‘,ijoéwo}(ﬁ), if k= O,

= 0T wj00 105|010y (9), if 1<k<h-1,
h
pil”

foantin: wj7190]_||'|0‘6{190}(19)’ if k=h.
J

The conclusion follows.
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