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Abstract

This note develops a rigorous analytical framework for computing exact MA(∞) coefficients of mixed causal-noncausal autoregressive

MAR(r, s). While analytical solutions exist only for the MAR(1, 1) specification in the existing literature (Gouriéroux and Jasiak, 2016),

general MAR(r, s) processes are typically handled through recursive approximation algorithms that suffer from systematic truncation

bias and numerical approximations. Using complex contour integration and the residue theorem, we derive explicit closed-form

expressions valid for arbitrary orders (r, s). The derived expressions enable exact simulation algorithms and facilitate implementation

of forecasting methodologies. Numerical comparisons with existing recursive methods demonstrate improvements in accuracy, and an

experiment with α-stable innovations illustrate the empirical relevance of our results.

Keywords: Mixed causal-noncausal autoregression, Laurent series, Moving average representation, Complex analysis

MSC classes: 60G10, 60G52, 62M10

1 Introduction

Mixed causal-noncausal autoregressive processes have gained significant attention in the econometrics and time series analysis

literature. Historically, the increasing attention devoted to these processes has been motivated by their utility in modeling

complex temporal patterns in time series data, particularly explosive bubble phenomena in financial asset prices (Andrews

et al., 2009; Lanne and Saikkonen, 2011; Gouriéroux and Jasiak, 2016; Gouriéroux and Zakoian, 2017; Velasco and Lobato,

2018; Hecq et al., 2020; Gourieroux and Jasiak, 2023; Hecq and Velasquez Gaviria, 2025; Blasques et al., 2025). These

processes – characterized as the solution to rational expectations models with infinite variance innovations(Gourieroux et al.,

2020a) – have also been investigated as a methodological approach to enhance macroeconometric modeling (Gouriéroux

et al., 2020b). Furthermore, they have proven to be an effective analytical tool for modeling climate variables associated with

extreme weather phenomena, including, for example, global temperature anomalies and ocean oscillation indices (Giancaterini

et al., 2022; de Truchis et al., 2025). These processes, denoted MAR(r, s), are defined by the equation

Φ(L)Ψ(L−1)yt = εt (1.1)

where Φ(L) = 1−φ1L−φ2L
2−· · ·−φrLr is the causal polynomial of order r, Ψ(L−1) = 1−ψ1L

−1−ψ2L
−2−· · ·−ψsL−s is

the noncausal polynomial of order s, and εt is an independent and identically distributed (i.i.d.) heavy-tailed sequence. This

representation is the one that is mostly used in the univariate case for simulation, estimation and prediction (Andrews et al.,

2009; Lanne and Saikkonen, 2011; Gouriéroux and Jasiak, 2016; Hecq et al., 2020; Gourieroux and Jasiak, 2023). However,

under some hypotheses detailed in Assumption 1, there is an equivalent to this multiplicative representation which is the

moving average infinity MA(∞) representation

yt = 1
Φ(L)Ψ(L−1) =

∑
k∈Z

δkεt+k (1.2)
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where (δk)k∈Z is a deterministic coefficients sequence. This representation is also used for simulation and forecasting.

Fries (2022) demonstrates that the (δk)k∈Z coefficients are essential for computing predictive conditional moments of mixed

causal-noncausal ARMA processes. In an extension of this work, de Truchis et al. (2025) shows that during extreme events,

conditional on observing a segment of the trajectory, mixed causal-noncausal processes are likely to be collinear to the

(δk)k∈Z coefficients. However, few papers propose solutions to compute these coefficients. Gouriéroux and Jasiak (2016)

suggest an approach based on partial fraction decomposition, as it allows theoretical derivation of an exact representation of

the MA coefficients. However, the partial fraction decomposition can be tedious to derive for high-order (r, s) specifications,

and the case r = s = 1 is essentially the only one considered in the literature. For large values of (r, s), existing approaches

are typically based on recursive computation, similar to impulse response calculations. For example, this is the approach

used in Lanne and Saikkonen (2011)’s seminal paper, extended in Hecq et al. (2020) and implemented in the so-called

MARX package developed by Hecq et al. (2017). Unfortunately, this recursive approach introduces systematic truncation

bias in coefficient computation, as it relies on defining the filtered components through ut ≡ Φ(L)yt and vt ≡ Ψ(L−1)yt or

equivalently Ψ(L−1)ut = εt and Φ(L)vt = εt and there associated MA(∞) representation

ut =
∞∑
k=0

δ
(u)
k εt+k and vt =

∞∑
k=0

δ
(v)
k εt−k

where (δ(u)
k )k∈Z and (δ(v)

k )k∈Z are coefficients of [Ψ(L−1)]−1 and [Φ(L)]−1. The truncation bias arises from the approximation

of the infinite sum, where ∞ is replaced by m ∈ N.

This note extends the MAR(1,1) analytical result by deriving explicit closed-form expressions for the MA(∞) coefficients

of any MAR(r, s) processes using complex analytic techniques. The remainder of this note is organized as follows. Section

2 presents the main lemma and associated proof. Section 3 applies this framework to several cases, including MAR(1, 1),

MAR(1, 2) with complex conjugate noncausal roots, and MAR(2, 3), with comparisons to recursive approximation methods.

Section 4 presents exact simulation algorithms and shows how these coefficients can be used in a pattern-based forecasting

methodology for processes with α-stable innovations. Section 5 concludes.

2 Theoretical results

For the analysis of the MA(∞) representation, it is convenient to express the autoregressive polynomials in their factorized

forms in terms of their roots. The causal polynomial can be written as

Φ(z) = 1−
r∑

k=1
φkz

k =
r∏
i=1

(1− λiz)

and the noncausal polynomial as

Ψ(z−1) = 1−
s∑

k=1
ψkz

−k =
s∏
j=1

(1− ζjz−1) = z−s
s∏
j=1

(z − ζj)

where λi and ζj represent the coefficients after factorization of the polynomials Φ(z) and Ψ(z−1) respectively. In view of

application of the residue theorem of Ahlfors (1979), we introduce the following Assumption.

Assumption 1 Consider the process defined in Equation (1.2):

(ι) the innovations sequence εt is i.i.d with E(εt) = 0.

(ιι) εt is regularly varying with tail index α > 0 such that E(|ε1|) < ∞ if α > 1 and E(|ε1|β) < ∞ for some β < α if

α ≤ 1
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(ιιι) the coefficients sequence (δk)k∈Z is real-valued and satisfies
∑
k∈Z δ

2
k <∞, if α > 2∑

k∈Z |δk|β <∞, β < α, if 0 < α ≤ 2
(2.1)

such that the MA(∞) representation of (1.1) converges a.s. for all t ∈ Z. Also, under (ιιι), for all i ∈ {1, . . . , r} and

j ∈ {1, . . . , s}, r and s finite, we assume :

(ιv) R1 = maxj=1,...,s |ζj | < 1, R2 = mini=1,...,r |λi|−1 > 1, R1 < R2 and define A = {z ∈ C : R1 < |z| < R2}.

Assumption 1 provides sufficient conditions for the existence and convergence of the MA(∞) representation (1.2). The

tail conditions in (ιι) align with the non-causal literature requiring non-Gaussian errors for identification of anticipative roots

but are unnecessary to apply the residue theorem. By contrast, (ιv) ensures convergence of the Laurent series in the annulus

A, which is essential for the application of the residue theorem and the demonstration of the following Lemma.

Lemma 2.1 For a MAR(r, s) process defined by equation (1.1) with factorized polynomials Φ(z) =
∏r
i=1(1 − λiz) and

Ψ(z−1) =
∏s
j=1(1− ζjz−1) satisfying Assumption 1, the MA(∞) coefficients of equation (1.2) are given by:

(ι) For k > 0 (noncausal coefficients):

δk =
s∑
j=1

ζ
(s−1)+k
j∏s

m6=j(ζj − ζm) ·
∏r
i=1(λiζj − 1)

· (−1)r (2.2)

(ιι) For k ≤ 0 (causal coefficients):

δk =
r∑
i=1

λ
(r−1)+|k|
i∏r

l 6=i(λi − λl) ·
∏s
j=1(λiζj − 1)

· (−1)s (2.3)

Proof of Lemma 2.1. The proof uses Laurent series expansion combined with contour integration techniques from complex

analysis. The transfer function of the MAR(r, s) process can be written as

H(z) = 1
Φ(z)Ψ(z−1) = zs∏r

i=1(1− λiz) ·
∏s
j=1(z − ζj)

.

The MA(∞) representation seeks coefficients δk such that

yt =
∞∑

k=−∞
δkεt+k = H(z)εt

where H(z) =
∑∞
k=−∞ δkz

−k is the Laurent series expansion. According to Laurent series theory, the coefficients are given

by

δk = 1
2πi

∮
C

H(z)zk−1dz

where C is an appropriate contour lying in A. Given our mixed causal-noncausal framework, the Laurent series expansion

requires careful consideration of the regions in which each part of the series converges. The function H(z) has two types of

poles: poles at z = 1/λi for i = 1, . . . , r (all outside the unit circle since |λi| < 1) and poles at z = ζj for j = 1, . . . , s (all

inside the unit circle since |ζj | < 1). To compute the coefficients δk, we choose contours within the convergence annulus A

depending on the value of k.

(ι) For k > 0 (non-causal coefficients), the integrand grows as |z| → ∞, so we use a contour C+ in the region {z ∈ A :

|z| > R1} oriented counterclockwise and enclosing all poles ζj . In that case, we denote by f+(z) the integrand. By the

residue theorem (Ahlfors, 1979) and under Assumption 1 we have

δk = 1
2πi

∮
C+

f+(z)dz =
s∑
j=1

Res(f+, ζj).
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We compute the residue at each pole ζj as follows

Res(f+, ζj) = lim
z→ζj

(z − ζj) ·
zs+k−1∏r

i=1(1− λiz) ·
∏s
m=1(z − ζm)

=
ζs+k−1
j∏r

i=1(1− λiζj) ·
∏
m 6=j(ζj − ζm)

.

Note that the denominator
∏r
i=1(1− λiζj) can be rewritten as (−1)r

∏r
i=1(λiζj − 1), introducing a factor (−1)r. Equation

(2.2) follows.

(ιι) Now consider the case k ≤ 0 (causal coefficients). Since the integrand decays as |z| → ∞ for k ≤ 0, the integral over

a large circle vanishes. Using a contour C− in the region {z ∈ A : |z| < R2}, oriented clockwise when viewed from infinity,

the residue theorem yields

δk = 1
2πi

∮
C−

f−(z)dz = −
r∑
i=1

Res(f−, 1/λi), (2.4)

where f−(z) denotes the integrand in that causal case. To compute the residue at each pole 1/λi, we note that 1 − λiz =

−λi(z − 1/λi) and thus,

Res(f−, 1/λi) = lim
z→1/λi

(z − 1/λi) ·
zs+k−1∏r

l=1(1− λlz) ·
∏s
j=1(z − ζj)

= lim
z→1/λi

zs+k−1

(−λi)
∏
l 6=i(1− λlz) ·

∏s
j=1(z − ζj)

.

Substituting z = 1/λi,

Res(f−, 1/λi) = (1/λi)s+k−1

(−λi)
∏
l 6=i(1− λl/λi) ·

∏s
j=1(1/λi − ζj)

and simplifying the denominators as ∏
l 6=i

(1− λl/λi) =
∏
l 6=i

λi − λl
λi

=
∏
l 6=i(λi − λl)
λr−1
i

s∏
j=1

(1/λi − ζj) =
s∏
j=1

1− λiζj
λi

=
∏s
j=1(1− λiζj)

λsi

we obtain

Res(f−, 1/λi) = λ
−(s+k−1)
i

(−λi) ·
∏

l 6=i
(λi−λl)

λr−1
i

·
∏s

j=1
(1−λiζj)
λs

i

= λr−k−1
i∏

l 6=i(λi − λl) ·
∏s
j=1(1− λiζj)

· (−1).

We can rewrite the denominator
∏s
j=1(1− λiζj) as (−1)s

∏s
j=1(λiζj − 1), which gives

Res(f−, 1/λi) = (−1)1−sλr−1−k
i∏

l 6=i(λi − λl) ·
∏s
j=1(λiζj − 1)

.

Since k ≤ 0, we have r − 1− k = (r − 1) + |k|, yielding equation (2.3) once we accounted for the negative sign in Equation

(2.4). 2

3 Some particular processes

3.1 MAR(1,1) Case

In this section, we consider the known case from Gouriéroux and Jasiak (2016): a simple MAR(1, 1) process with Φ(L) =

1 − φL and Ψ(L−1) = 1 − ψL−1, so λ1 = φ and ζ1 = ψ. For our numerical exercise, we choose a MAR(1, 1) process

with a causal coefficient φ = 0.6 and a noncausal coefficient ψ = 0.7, which corresponds to (1 − 0.6L)(1 − 0.7L−1)yt = εt.

This process exhibits both causal and noncausal dynamics, with the causal component contributing moderate persistence
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backward in time, and the noncausal component providing stronger persistence in the anticipatory effects forward in time.

Applying the formulas from Lemma 2.1, we get for k > 0

δk = ζ
(1−1)+k
1∏1

m6=1(ζ1 − ζm) ·
∏1
i=1(λiζ1 − 1)

· (−1)1 = ψk

1− φψ .

The central coefficient is obtained by taking the limit or direct application,

δ0 = 1
1− φψ

and we obtain for k < 0 from equation (2.3)

δk = λ
(1−1)+|k|
1∏1

l 6=1(λ1 − λl) ·
∏1
j=1(λ1ζj − 1)

· (−1)1 = φ|k|

1− φψ .

For our specific values φ = 0.6 and ψ = 0.7:

δk = ψk

1− φψ = (0.7)k

0.58 , k > 0

δ0 = 1
1− φψ = 1

0.58 ≈ 1.724

δk = φ|k|

1− φψ = (0.6)|k|

0.58 , k < 0

These results demonstrate the characteristic asymmetric decay pattern of MAR(1, 1) coefficients: the future coefficients δk
for k > 0 decay at rate ψ = 0.7, while the past coefficients for k < 0 decay at the faster rate φ = 0.6. The normalization

factor 1/(1− φψ) = 1/0.58 ≈ 1.724 ensures proper scaling of the MA(∞) representation.

Figure 1: The m = 20 first MA(∞) coefficients δk for MAR(1, 1) process with φ = 0.6 and ψ = 0.7. The graph compares our exact algorithm

and the recursive method for different length factors used in the approximation.

The graphical analysis in Figure 1 reveals that the performance between our exact algorithm and the recursive method

are comparable in this particular case. The two methods are very close because the exponential decay is preserved on both

sides in the MAR(1,1) case. The curves show clear asymmetric decay around the central peak δ0 ≈ 1.724. Past influences

(k < 0) decay geometrically at rate φ = 0.6, while future influences (k > 0) decay more slowly at rate ψ = 0.7. This temporal

asymmetry manifests in the immediate neighbors: δ−1 ≈ 1.034 < δ1 ≈ 1.207, indicating stronger anticipatory effects than

backward-looking dynamics.

3.2 MAR(1,2) Case with complex conjugate noncausal roots

In this section, we examine a specific MAR(1, 2) process with causal coefficient φ1 = 0.6 and noncausal coefficients ψ1 = 0.8

and ψ2 = −0.5, which corresponds to the process Xt = 0.6Xt−1 + 0.8Xt+1 − 0.5Xt+2 + εt. The general MAR(1, 2) process
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is defined by Φ(L)Ψ(L−1)yt = (1 − λ1L)(1 − ζ1L
−1)(1 − ζ2L

−1)yt = εt. For the causal coefficient, we have λ1 = 0.6,

obtained directly from the first-order polynomial. For the noncausal roots ζ1 and ζ2, we solve the characteristic equation

z2 − 0.8z + 0.5 = 0. The discriminant is ∆ = (0.8)2 − 4(0.5) = 0.64− 2.0 = −1.36 < 0, yielding complex conjugate roots

ζ1 = 0.8 + i
√

1.36
2 = 0.4 + 0.583i and ζ2 = 0.8− i

√
1.36

2 = 0.4− 0.583i

and hence |ζj | =
√

(0.4)2 + (0.583)2 =
√

0.16 + 0.340 =
√

0.5 ≈ 0.707 < 1, j = {1, 2}. From Lemma 2.1, for k > 0, the

coefficients are given by:

δk = ζ
(s−1)+k
1∏s

m6=1(ζ1 − ζm) ·
∏r
i=1(λiζ1 − 1)

· (−1)r + ζ
(s−1)+k
2∏s

m 6=2(ζ2 − ζm) ·
∏r
i=1(λiζ2 − 1)

· (−1)r = (−1)r

ζ1 − ζ2

[
ζ1+k

1
λ1ζ1 − 1 −

ζ1+k
2

λ1ζ2 − 1

]
Since ζ1 − ζ2 = 2i · Im(ζ1) = 2i(0.583) = 1.166i, and using the complex conjugate properties with λ1 = 0.6, we obtain

δk = − 1
1.166i

[
(0.4 + 0.583i)1+k

−0.76 + 0.350i −
(0.4− 0.583i)1+k

−0.76− 0.350i

]
.

For k ≤ 0 we obtain

δk =
1∑
i=1

λ
(r−1)+|k|
i∏1

l 6=i(λi − λl) ·
∏2
j=1(λiζj − 1)

· (−1)s = λ
|k|
1

(λ1ζ1 − 1)(λ1ζ2 − 1) · (−1)2 = λ
|k|
1

(λ1ζ1 − 1)(λ1ζ2 − 1)

Replacing by the numerical values we obtain:

δk = (0.6)|k|

(0.6 · (0.4 + 0.583i)− 1)(0.6 · (0.4− 0.583i)− 1) = (0.6)|k|

0.7
And finally, for k = 0 we have

δ0 = 1
(λ1ζ1 − 1)(λ1ζ2 − 1) = 1

0.7 ≈ 1.429.

Figure 2 presents the MA(∞) coefficients for the mixed MAR(1, 2) process with φ1 = 0.6 and complex conjugate noncausal
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Figure 2: MA(∞) coefficients δk for MAR(1, 2) process with complex conjugate noncausal roots which corresponds to ψ1 = 0.8, ψ2 = −0.5 and

φ1 = 0.6. The graph compares our exact algorithm and the recursive method for different length factors used in the approximation. On the right

hand side, we also report the relative error convergence of the two methods in terms of relative RMSE and maximum absolute error.

roots ζ1 = 0.4 + 0.583i, ζ2 = 0.4− 0.583i (ψ1 = 0.8, ψ2 = −0.5). The coefficients exhibit asymmetric structure with positive

central peak δ0 ≈ 1.429. The backward component (k < 0) shows exponential decay at rate 0.6 with alternating signs, while

the forward component (k > 0) displays oscillatory decay with envelope rate
√

0.5 ≈ 0.707. The recursive method exhibits

reduced accuracy for complex conjugate roots, requiring higher truncation factors to achieve convergence.
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3.3 MAR(2,3) Case

In this section, we examine a specific MAR(2, 3) process with causal coefficients φ1 = 0.5 and φ2 = 0.3, and noncausal

coefficients ψ1 = 0.8, ψ2 = 0.2, and ψ3 = −0.1, which corresponds to the process Xt = 0.5Xt−1 + 0.3Xt−2 + 0.8Xt+1 +

0.2Xt+2 − 0.1Xt+3 + εt. The general MAR(2, 3) process is defined by Φ(L)Ψ(L−1)yt = (1− λ1L)(1− λ2L)(1− ζ1L
−1)(1−

ζ2L
−1)(1 − ζ3L

−1)yt = εt. Solving the characteristic equation of the causal part we get λ1 = 0.852 and λ2 = −0.352. For

the noncausal roots we obtain ζ1 = 0.863, ζ2 = 0.087, and ζ3 = −0.150. From our general formulas in Lemma 2.1, the

coefficients are given by: For k > 0 applying equation (2.2), we get:

δk =
3∑
j=1

ζ2+k
j∏3

m6=j(ζj − ζm) ·
∏2
i=1(λiζj − 1)

For k ≤ 0 applying equation (2.3) , we obtain the following results:

δk =
2∑
i=1

λ
1+|k|
i∏2

l 6=i(λi − λl) ·
∏3
j=1(λiζj − 1)

· (−1)

The central coefficient δ0 reflects the multiplicative interaction between all causal and noncausal roots:

δ0 = 1∏2
i=1
∏3
j=1(λiζj − 1)
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Figure 3: The m = 20 first MA(∞) coefficients δk for mixed MAR(2, 3) process with causal coefficients φ1 = 0.5, φ2 = 0.3 and noncausal

coefficients ψ1 = 0.8, ψ2 = 0.2, ψ3 = −0.1. The graph compares our exact algorithm and the recursive method for different length factors used

in the approximation. On the right hand side, we also report the relative error convergence of the two methods in terms of relative RMSE and

maximum absolute error.

Figure 3 presents the MA(∞) coefficients for the mixed MAR(2, 3) process. The curves reveal the sophisticated asym-

metric structure characteristic of high-order mixed processes. The causal component (k < 0) exhibits sophisticated decay

patterns from two causal roots: dominant λ1 = 0.852 and oscillatory λ2 = −0.352. The noncausal component (k > 0) also

displays intricate decay from three roots: primary ζ1 = 0.863, secondary ζ2 = 0.087, and oscillatory ζ3 = −0.150. The

central coefficient δ0 ≈ 1.42 reflects the multiplicative interactions. Again, the recursive method displays lower precision

than our exact approach.
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4 Simulation and forecasting algorithms

Based on the closed-form expressions derived in Lemma 2.1, we present a direct simulation algorithm for MAR(r, s) processes.

This method explicitly computes the MA(∞) coefficients to generate process realizations with controlled truncation error.

Accordingly, the algorithm proceeds through the following steps:

(ι) Coefficient computation: using equations (2.2) and (2.3), we compute the MA(∞) coefficients δk for a sufficiently large

range k ∈ [−m,m], where m is chosen such that |δk| < ε for some predetermined tolerance ε > 0 and |k| > m.

(ιι) Heavy-tailed innovation generation: generate i.i.d. innovations εt following an α-stable distribution S(α, β, σ, µ). The

parameters control tail behavior (α ∈ (0, 2]), asymmetry (β ∈ [−1, 1]), scale (σ > 0), and location (µ ∈ R). Other

heavy-tailed distributions may be substituted as needed (Student t distribution)

(ιιι) Process simulation: for each time point t ∈ {m+ 1, . . . , T −m}, compute the exact process values:

yt =
m∑

k=−m
δkεt+k (4.1)

The explicit computation of the MA(∞) coefficients δk provides a theoretical foundation for advanced forecasting methods

based on pattern recognition during extreme events (see e.g. Fries, 2022; de Truchis et al., 2025). As an illustration, consider

a MAR(1, 3) process defined as the strictly stationary solution of

(1− 0.8L−1)(1− 0.6L)(1− 0.3L)(1− 0.1L)Xt = εt

where the noncausal root is ζ1 = 0.8 and the causal roots are λ1 = 0.6, λ2 = 0.3, λ3 = 0.1. Here εt is an i.i.d. sequence

of regularly varying errors with tail index α = 1.5. The process (Xt) admits the MA(∞) representation Xt =
∑
k∈Z δkεt+k

with coefficients computed via Lemma 2.1. Following Fries (2022), denote Xt := (Xt−m, . . . , Xt), Xt+h := (Xt+1, . . . , Xt+h),

and define the forecasting patterns

Dk := (δk−1, δk−2, . . . , δk−h)
|δk|

for k ∈ {0, 1, . . . , h}.

From Lemma 2.1, for k > 0, we obtain

δk = ζ
(s−1)+k
1∏3

i=1(λiζ1 − 1)
· (−1)r = (0.8)0+k

(0.6× 0.8− 1)(0.3× 0.8− 1)(0.1× 0.8− 1) · (−1)3

Computing the denominator

(0.48− 1)(0.24− 1)(0.08− 1) = (−0.52)(−0.76)(−0.92) = −0.363584.

Therefore, for k ≥ 0, δk = −1×(0.8)k

−0.363584 = 2.750(0.8)k, yielding δ0 = 2.750, δ1 = 2.200, δ2 = 1.760, δ3 = 1.408. For k < 0, we get

δk =
3∑
i=1

λ
(r−1)+|k|
i∏3

l 6=i(λi − λl) · (λiζ1 − 1)
· (−1)s =

3∑
i=1

λ
2+|k|
i∏3

l 6=i(λi − λl) · (λiζ1 − 1)
· (−1)

By computing each term, we obtain:

δk = (0.6)2+|k|

0.078 − (0.3)2+|k|

0.0456 + (0.1)2+|k|

0.092 for k < 0
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Using this numerical formula and applying it to a forecasting horizon of h = 3, the normalized patterns Dk are:

Dk =



1
δ0

(δ−1, δ−2, δ−3) = 1
2.750 (2.188, 1.485, 0.944) = (0.796, 0.540, 0.343) for k = 0,

1
δ1

(δ0, δ−1, δ−2) = 1
2.200 (2.750, 2.188, 1.485) = (1.25, 0.995, 0.675) for k = 1,

1
δ2

(δ1, δ0, δ−1) = 1
1.760 (2.200, 2.750, 2.188) = (1.25, 1.562, 1.243) for k = 2,

1
δ3

(δ2, δ1, δ0) = 1
1.408 (1.760, 2.200, 2.750) = (1.25, 1.562, 1.953) for k = h = 3.

(4.2)

Under appropriate regularity conditions, if during an extreme event the trajectory Xt is approximately collinear to

(ψm1 , ψm−1
1 , . . . , ψ1, 1) with exponential growth rate ψ−1

1 = 1.25, then the forecasting probabilities are:

P
(∥∥∥∥Xt+h

|Xt|
− sDk

∥∥∥∥ < δ

∣∣∣∣|Xt| > x,

∥∥∥∥ Xt

|Xt|
− sψ

∥∥∥∥ < η

)
−→
x→+∞

ζ
αk
1 (1− ζα1 ) if k ∈ {0, 1, . . . , h− 1}

ζαh1 if k = h

(4.3)

where ψ := (ψm1 , ψm−1
1 , . . . , ψ1, 1) and s ∈ {−1,+1} indicates the sign of the extreme event.

Given an observed trajectory (Xt−2, Xt−1, Xt) approximately collinear to ψ = (0.64, 0.8, 1), the forecaster computes the

normalized observed pattern and matches it against the theoretical patterns {D0,D1,D2,D3}. With tail parameter α = 1.5,

the conditional forecasting probabilities are:

P
(∥∥∥∥Xt+h

|Xt|
− sDk

∥∥∥∥ < δ

∣∣∣∣|Xt| > x,

∥∥∥∥ Xt

|Xt|
− sψ

∥∥∥∥ < η

)
−→
x→+∞

=



(0.8)1.5×0(1− (0.8)1.5) ≈ 1× 0.284 = 0.284 for k = 0

(0.8)1.5×1(1− (0.8)1.5) ≈ 0.716× 0.284 = 0.203 for k = 1

(0.8)1.5×2(1− (0.8)1.5) ≈ 0.512× 0.284 = 0.145 for k = 2

(0.8)1.5×3 ≈ 0.367 for k ≥ 3

Time

Xt

0

1

2

3

4

5

6

t− 8 t− 6 t− 4 t− 2 t t+ 2 t+ 4 t+ 6

Observation Forecast

k = 0
k = 1
k = 2
k = 3

Xt Xt+1 Xt+2 Xt+3

3.05

3.81

2.43

4.76

3.04

1.65

5.95

3.79

2.06

1.05

0.7
16

0.284

0.71
6

0.284

1.0

0.367

0.633

1.0

1.0 k = 0

P = 0.284

k = 1

P = 0.203

k = 2

P = 0.145

k = 3

P = 0.367

Figure 4: Pattern-based forecasting illustration for MAR(1,3) process with exponential growth observation and probabilistic forecast trajectories.

Node values computed as Xt+h = Xt×D(h)
k

where Dk are normalized patterns from (4.2). Probabilities follow P (k) = ζαk1 (1−ζα1 ) for k ∈ {0, 1, 2}

and P (k = 3) = ζαh1 as in (4.3).

Figure 4 demonstrates the implementation of the theoretical framework where the left panel shows the transition from

observed exponential growth to multiple forecasting scenarios, while the right panel presents the probability tree structure

starting from Xt = 3.05 with computed conditional probabilities for different bubble peak timings (k = 0, 1, 2, 3). The

visualization illustrates how the pattern-matching algorithm leverages the explicit MA(∞) coefficients to assign forecast

probabilities based on the observed trajectory’s alignment with the theoretical patterns Dk, demonstrating the practical
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utility of the coefficient formulas from Lemma 2.1 for systematic bubble forecasting through pattern recognition. During

extreme events, the process dynamics simplify to geometric patterns governed by the noncausal root ζ1, enabling tractable

probabilistic forecasting of bubble peaks where each branch represents a distinct collapse scenario with its associated prob-

ability.

5 Conclusion

This note derives closed-form expressions for the MA(∞) coefficients of mixed causal-noncausal autoregressive MAR(r, s)

processes through Laurent series expansion and residue calculus. Our results extend the partial fraction decomposition

approach from the MAR(1, 1) case to arbitrary MAR(r, s) specifications. The derived expressions enable exact simulation

algorithms that avoid the truncation bias inherent in recursive methods, as demonstrated through numerical comparisons

across different model specifications. Furthermore, the explicit coefficient structure facilitates the development of pattern-

based forecasting methodologies for extreme events in processes with α-stable innovations.
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