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Abstract

We introduce a regime-switching dynamic, inspired by the Markov Switching Conditional

Correlation model of Pelletier (2006), into the Dynamic Equicorrelation (DECO) model

proposed by Engle and Kelly (2012). The DECO model decomposes the correlation matrix

into blocks, within which conditional correlations are equal. Correlations between blocks

can either follow a common structure or be block-specific. Our Regime Switching Dynamic

Equicorrelation (RSDECO) model is therefore well-suited for modeling large conditional

correlations in the presence of level shifts. Extensive simulations demonstrate that RS-

DECO effectively reproduces the true correlation levels for a large number of variables.

Analyzing daily correlations between commodity, stock, and bond returns from 01/04/2000

to 12/29/2022 reveals significant changes in correlation patterns over time. The first major

and significant regime shift occurs around September 15, 2008. Furthermore, the dynamics

of correlations between the three asset classes appear to have become unstable after 2020.
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1 Introduction

Institutional investors routinely monitor hundreds or even thousands of assets, requir-

ing accurate estimates of their returns’ volatilities and correlations to make informed

investment decisions. These correlations are essential components of portfolio manage-

ment, asset pricing, and risk management. Engle (2002) Dynamic Conditional Correlation

(hence DCC) model is one of the most popular multivariate GARCH models. This model

suffers from curse of dimensionality as the number of parameters increases much faster

than the number of returns.1 Estimation is possible for a limited number of returns, even

if constraints are imposed on the parameters of the model.

Alessi et al. (2009), De Nard et al. (2021), and more recently Trucíos et al. (2023)

utilize factor models to estimate high-dimensional covariance matrices. However, a no-

table challenge with this approach is the identification of factors. In contrast, Engle et al.

(2019) propose a robustified DCC model, which combines the original DCC framework

with shrinkage methods to produce large covariance matrices that are less prone to esti-

mation errors. In some applications, such as portfolio selection, it can be more practical

to estimate the inverse of the correlation matrix (precision matrix) directly. The model

by Lee et al. (2021) integrates the precision matrix estimation methods of Fan and Lv

(2016) with the DCC approach of Engle (2002), providing a hybrid solution tailored for

such scenarios.

More relevant to this paper, another line of research focuses on decomposing complex

numerical problems into a series of simpler, more manageable sub-problems (Palandri

(2009), Engle (2009a,b), and Archakov et al. (2024)). The Dynamic Equicorrelation

(DECO) model introduced by Engle and Kelly (2012) offers a compelling approach to

tackling high-dimensional challenges. This model assumes that all correlations are equal

to a single common value, referred to as the equicorrelation, which evolves over time. The

DECO can be extended to a B-Blocks DECO model, with block-specific equicorrelations,

and the specific inter-block equicorrelations for each pair of blocks. Bauwens and Xu
1See for instance Bauwens et al. (2006) and De Almeida et al. (2018) for a literature review

2



(2023) recently extended the DCC and the DECO models by introducing measures of

realized variances and correlations estimated from intraday data.

Several papers have proposed multivariate GARCH with regime switching based on

observable variables (Tse and Tsui (2002), Audrino and Trojani (2011), and Silvennoinen

and Teräsvirta (2009)). Since the threshold is unknown in practice, the question of how

to determine it remains a major challenge. Pelletier (2006) suggests using a Markov

switching model for the correlation. The value of the current correlation depends on

the underlying regime, and the conditional covariance varies according to changes in the

conditional variances and the correlation.

The innovation of this paper is to add a regime switching dynamic to the DECO model

in the spirit of Pelletier (2006). In our model, called Regime Switching Dynamic Equicor-

relation (RSDECO), equicorrelations are constant within each regime but vary between

regimes by a first order Markov process. Our model introduces discrete breaks into the

modelling of conditional correlation to capture a finite number of switching regimes. A

series of Monte Carlo simulations highlights the performance of our approach. The RS-

DECO model appears to perform well in reproducing the true correlation and also in

dealing with the high dimensional problem.

As an empirical application, we estimate conditional correlations using a sample of 24

daily commodity returns and 4 US equity returns from 4 January 2000 to 29 December

2022. First, we find two dynamic correlation regimes with a significant regime shift on 15

September 2008, coinciding exactly with the Lehman bankruptcy date. The second regime

is associated with a dramatic increase in the correlation between seemingly unrelated

commodities.

However, the simple RSDECO version detects a regime shift at the end of 2005,

well before the financial crisis, associated with the process of commodity financialization.

Second, our results show that correlations have returned to their pre-crisis levels by the end

of 2013, indicating the temporary nature of the impact of the financial crisis on commodity

correlation trends. Finally, a more detailed analysis of commodity group correlations from

Block-RSDECO reveals heterogeneity among commodity group co-movements.
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The paper is organized as follows. In section 2, we develop the RSDECO model and

the estimation method. Section 3 presents the results of the simulation study. Section 4

presents our empirical application and Section 5 concludes.

2 The model

2.1 The regime switching DECO

We consider the vector of rt = (r1t, .., rkt)′, of size k × 1 assets returns such as rt|It−1 ∼

NID(µt, Ht) where It = {rs, s ≤ t} is the information set at time t. The conditional

covariance matrix Ht is decomposed as:

Ht = DtRtDt

where Dt is a k × k diagonal matrix containing the conditional standard deviations. In

(Engle, 2002) classical DCC(1,1) model, the dynamics of Rt is modelled as:

Rt = Q
∗−1/2
t QtQ

∗−1/2
t

Qt = C + A′ϵt−1ϵ
′

t−1A + B′Qt−1B

where ϵt = D−1
t (rt − µ) is the vector of standardized residuals, Qt the quasi correlation

matrix, and Q∗
t a diagonal matrix with the main diagonal of Qt

The Dynamic EquiCorrelation Model (DECO) of Engle and Kelly (2012) is based on

the assumption that all correlations are equal to the equicorrelation which varies over

time. The conditional correlation matrix is therefore written as:

Rt = (1 − ρt)Ik + ρtJk (1)

where ρt refers to the equicorrelation, Ik is a k− dimensional identity matrix and Jk is a

k ×k matrix of ones. The estimation of the equicorrelation ρt is model-free. In the DECO
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model, ρt is estimated as the average of the conditional correlations from a CC model:

ρt = 1
k(k − 1)(ι′RCC

t ι − k) (2)

where ι is a k × 1 vector of ones. In this case, we face the same dimensionality issue when

k increases.

In the spirit of Pelletier (2006), we adopt a regime-switching structure for the cor-

relation process in the DECO model (RSDECO) and assume that the dynamic of the

equicorrelation is characterized by N regimes. The transition between regimes is mod-

elled by a first-order Markov chain. The equicorrelation at date t follows:

ρt =
N∑

n=1
1{st=n}ρ

n, st ∈ {1, ..., N} (3)

where {st}t∈N is a sequence following a first-order Markov chain with N states. ρn is a

conditional equicorrelation corresponding to regime n. The unobservable realisation of

the regime {st}t∈N is determined by the transition probability matrix P whose elements

are pij = P (st = j|st−1 = i), i, j ∈ 1, ..., N . The resulting state-dependent correlation

matrix at date t is therefore:

Rt =



1
. . . ρt

1

ρt
. . .

1


(4)

Following Pelletier (2006), we include the identification constraint: ρ1 > ρ2 > ... > ρN

to deal with the relabelling switching problem. Engle and Kelly (2012) points out that

the equicorrelation must verify the condition ρn ∈] −1
k−1 , 1[ to ensure that Rt is positive

definite2.
2It is noteworthy that as the number of variables k becomes more significant, the lower bound, −1

k−1 ,
decreases and approaches zero. This would prevent the detection of negative correlations when we include
a significant number of series in the analysis.
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2.2 Block RSDECO

As in DECO, we decompose the correlation matrix Rt into blocks of equicorrelations to

obtain a more flexible and realistic model of conditional correlation. A block characterised

by a single equicorrelation can be associated with a particular asset class, while the corre-

lation between blocks estimates the correlation between different asset classes. We make

the simplifying assumption that both intra-block and inter-block correlations follow the

same first-order Markov chain. This block decomposition appears to significantly improve

both the estimation and the explanatory power of our model. Taking into account both

economic assumptions and practical considerations, we present two ways of introducing

block structure.

2.2.1 Reduced-Block RSDECO

As a first step, we assume that, for each state st = 1, ..., N , each block has its equicorrela-

tion, while the equicorrelation is the same between all blocks. This formulation is called

Reduced Block-RSDECO (hereafter RB-RSDECO). Let B be the number of blocks, in

this configuration the total number of correlations to be estimated is (B + 1)N . The

conditional correlation matrix Rt is written as:

Rt =
N∑

n=1
1{st=i}Rn, st = 1, ..., n (5)
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Each state n = 1, ..., N is characterized by its conditional correlation matrix Rn:

Rn =



1 ρn
1

. . .

ρn
1 1

ρn
inter

1 ρn
2

. . .

ρn
2 1

. . .

ρn
inter

1 ρn
B

. . .

ρn
B 1



(6)

ρn
i , i = 1, ..., B is equicorrelation for block i in state n while ρn

inter is the correlation between

blocks supposed to be the same between all blocks. The correlation matrices are such as

Rn ̸= Rn′ for n ̸= n′. The distribution of the process defined by {st}t∈N is determined by

a transition matrix P as previously.
At each date t, the conditional correlation matrix Rt is therefore equal to:

Rt =



1 ρ1,t

. . .

ρ1,t 1

ρinter,t

1 ρ2,t

. . .

ρ2,t 1

. . .

ρinter,t

1 ρB,t

. . .

ρB,t 1



(7)

where ρi,t = ∑N
n=1 1{st=n}ρ

n
i and ρinter,t = ∑N

n=1 1{st=n}ρ
n
inter are respectively equicorrela-

tion for block i ∈ 1, ...B and the equicorrelation between blocks at date t.

As for the simple RSDECO, identification constraints are required. For a block B of

size nB, the equicorrelation parameters ρn
B, n = 1, ..., N , must satisfy the identification

constraint ρ1
B > ρ2

B > ... > ρN
B for n = 1, ..., N . Rt matrix is a positive definite if and only
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if ρn
B ∈] −1

kB−1 , 1[.

The constraints on the inter-block equicorrelation are slightly different due to the

estimation procedure. As shown in the Estimation subsection, a B-block RSDECO is

estimated by maximizing the sum of the likelihoods of all possible pairs of B-blocks that

are estimated from the two-block RSDECO likelihood. As in Engle and Kelly (2012),

the equicorrelation in regime n between two blocks i and j of size ki and kj respectively,

denoted by ρn
ij, must be checked:

ρn
ij ∈ (−ln

ij, ln
ij) (8)

with

ln
ij =

√√√√(ρn
i (ki − 1) + 1)(ρn

j (kj − 1) + 1)
kikj

(9)

for n = 1, ..., N . To respect the positive definite constraint, the inter-block equicorrelation

ρn
inter,t in regime n must satisfy the relation (9) for every pair, which is equivalent to having:

ln
inter = min(ln

ij) (10)

for i, j = 1, ..., B and i ̸= j. This constraint may seem strong, but it keeps the model

parsimonious as the number of groups increases.

2.2.2 Full-block RSDECO

A more complete way to express Block-RSDECO is to relax the assumption of a common

inter-block equicorrelation ρinter
t . We assume specific equicorrelation for each pair of

blocks. Within this formulation, called Full Block-RSDECO (hereafter FB-RSDECO), the
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conditional correlation matrices for each state n = 1, ..., N has the following specification:

Rn =



1 ρn
1

. . .

ρn
1 1

ρn
12 · · · ρn

1B

ρn
21

1 ρn
2

. . .

ρn
2 1

· · · ρn
2B

... ... . . . ...

ρn
B1 ρn

B2 . . .

1 ρn
B

. . .

ρn
B 1



n = 1, ..., N

The Correlation matrix Rt is now equal to:

Rt =



1 ρ1,t

. . .

ρ1,t 1

ρ12,t · · · ρ1B,t

ρ21,t

1 ρ2,t

. . .

ρ2,t 1

· · · ρ2B,t

... ... . . . ...

ρB1,t ρB2,t . . .

1 ρB,t

. . .

ρB,t 1


where ρi,t = ∑N

n=1 1{st=n}ρ
n
i and ρij,t = ∑N

n=1 1{st=n}ρ
n
ij are respectively equicorrelation

for block i ∈ 1, ..., B and the equicorrelation between blocks i and j at date t.

As shown in Table 1, because the FB-RSDECO structure is more complete and accu-

rate than the RB-RSDECO structure, it requires more equicorrelations to be estimated.
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Block equicorrelations are bounded as shown in equation (8), while inter-block equicorre-

lations are bounded as shown in equation (9).

Table 1: Number of estimated correlations.

Model Number of correlations Bounds

RSDECO N
(

−1
k−1 , 1

)

RB-RSDECO B(N + 1)
(

−1
ki−1 , 1

)
(Block i)

min(ln
ij) (inter-Block)

FB-RSDECO (B + B(B−1)
2 )N

(
−1

ki−1 , 1
)

(Block i)
(ln

ij) (inter-Block)

2.3 Estimation

Our model can be estimated using the two-step procedure of Engle and Sheppard (2001).

Θ = (φ, θ) is the parameter space of the RSDECO, where φ are the parameters of the

univariate volatility model and θ are the parameters of the correlation model. Assuming

Gaussian innovations, the first step involves estimating the k univariate GARCH and

corresponds to the volatility component of the log-likelihood:

ℓv(φ|rt) = −1
2

T∑
t=1

(k log(2π) + 2 log(|Dt|) + r′
tD

−2
t rt) (11)

These variance estimates of rt are used to construct the matrix Dt:

Dt = diag{h
1/2
i,t } (12)

Then the standardized residuals are given by:

ϵt = D−1
t rt (13)
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In the second step, the correlation component is estimated by maximising the likelihood

conditional on the volatility parameters estimated in the first step:

ℓc(θ|rt, φ) = −1
2

T∑
t=1

(log(|Rt|) + ϵ′
tR

−1
t ϵt) (14)

The reduced and full block RSDECO are estimated using the same strategy as for

Engle and Kelly (2012). A simple way to estimate the B block likelihood is to sum the

estimated B(B − 1)/2 two-block likelihoods.

ℓc(θ|rt, φ) =
B∑

i=1

B∑
j=i+1

ℓij,c(θ|rt, φ) (15)

where ℓij,c is the two-block likelihood of the submodel consisting of blocks i and j.

As explained above, the transition from one regime to another is done using the first-

order Markov chain. Since the Markov chain st is an unobservable regime variable, we

will need to infer the state of these Markov chains through a filtration step (see Hamilton

(1989, 1990, 1994)). Let ξjt be the probability of being in regime j. The inference about

the state of the Markov chain is then defined by

ξ̂t|t = (ξ̂t|t−1 ⊙ ηt)
1′(ξ̂t|t−1 ⊙ ηt)

(16)

where ⊙ denotes element-by-element multiplication. ξ̂t|t contains the probability to be in

each regime at time t given the observations set up to t. Assuming a first-order Markov

process, the probability at time t + 1 is conditional only on information included in ξ̂t|t:

ξ̂t+1|t = P × ξ̂t|t (17)

Smoothed probabilities can be computed from the regular Markov-Switching repre-

sentation. These filtered probabilities refer to inferences on the state conditional on all

the information set of the sample. Computation is done using the filter of Kim (1994)
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given by:

ξ̂t|T = ξ̂t|t ⊙ {P ′[ξ̂t+1|T ⊘ ξ̂t+1|t]} (18)

where ⊘ denotes element-by-element division.

The conditional correlation matrix is:

R̂t|T =
N∑

n=1
R̂st=nξ̂st=n,t|T

Determining the number of identifiable regimes required for the Markov process to

characterise the observed process is a particular problem for our RSDECO model, as it is

for the RSDC model of Pelletier (2006). As explained in Krolzig (1997), testing procedures

suffer from non-standard asymptotic distributions of the likelihood ratio test statistic due

to the presence of nuisance parameters under the null hypothesis. Alternatively, and

following Pelletier (2006), the number of regimes is determined in an ad hoc manner.

In other words, we have to estimate models by incrementally increasing the number of

regimes and then selecting the appropriate number of regimes using the resulting quality

for the additional regime as a criterion. If, during the additional regime, the smoothed

probabilities and correlations are represented only by a few blips that cannot be explained

by an event study, they look more like outliers than effective regimes. This may be an

indication of the appropriate number of regimes.

3 Simulation study

In this section, we perform a simulation exercise to demonstrate the performance of our

model. The results of our RSDECO model are then compared with those of DECO using

simulated correlation data. The simulations are carried out in an environment where the

true correlations are known. The data generated then correspond to the standardised

residuals after the de-garching step. The idea is to avoid the search step, which is useless

for our experiments. Under this assumption, for each simulated standardised residual we

generate data as follows:
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εt = ηtR
0.5
t (19)

where ηt are normally distributed random numbers. We generate five artificial equicorre-

lation data sets using a variety of models:

• DGP 1: Rsim
t = 0.5 + 0.4 cos(2πt/500).

• DGP 2: Rsim
t = 0.5 + sin(s4)/(1 +

√
|s4|), with s = 5 − t/200.

• DGP 3: Rsim
t =



0.1 if t ∈ [1; 500]

0.3 if t ∈ [501; 1000]

0.6 if t ∈ [1001; 1500]

0.95 if t ∈ [1501; 2000]

• DGP 4: a 2-Block DECO with DCC dynamics with two regimes.

Rsim
t =


ρ1,1,t = −0.1, ρ2,2,t = 0.3, ρ1,2,t = −0.1 if t ∈ [750, 1250]

ρ1,1,t = 0.8, ρ2,2,t = 0.4, ρ1,2,t = −0.3 otherwise

• DGP 5: a 3-Block DECO with DCC dynamics with two regimes.

Rsim
t =



ρ1,1,t = 0.9, ρ2,2,t = 0.7, ρ3,3,t = 0.5

ρ1,2,t = 0.3, ρ1,3,t = 0.1, ρ2,3,t = 0.3

 if t ∈ [750, 1250]

ρ1,1,t = 0.2, ρ2,2,t = 0.2, ρ3,3,t = 0.2

ρ1,2,t = 0.15, ρ1,3,t = 0.1, ρ2,3,t = 0.1

 otherwise

Each simulation contains T = 2000 observations. However, the number of series K

increases from K = 50 to K = 400. Using sufficiently large samples allows us to test

whether our model does not suffer from the high dimensional problem. While DGP 1

and 2 are based on trigonometric functions and were chosen to reproduce smooth regime

changes, DGP 3 is based on an RSDECO dynamic with four regimes. We then introduce

blocks when generating DGP 4 and 5, which are respectively a 2-block DECO with DCC

dynamics with two regimes and a 3-block DECO with DCC dynamics with two regimes.

The correlation value for each of the DGPs 4 and 5 is chosen so that the condition in

Equation (8) is satisfied, which guarantees that Rt is positive definite. DGP 5 is used to

compare the B-block RSDECO and the B-block DECO in their full and reduced forms.
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Our RSDECO model is compared with the DECO model proposed by Engle and Kelly

(2012). Two different error measures are used for this purpose, namely the Mean Squared

Error (MSE) and the Mean Absolute Deviation (MAD). 3 Figure 1 illustrates simulated

and estimated correlations using the DECO and RSDECO models. Comparing the two

model estimates suggests that both models appear to perform well in reproducing the

true correlation, with a natural relative advantage for the RSDECO model in capturing

regime switching. The overall result of the error measure is satisfactory. As shown in

Table 2, both MAE and MAD are quite weak, indicating that the estimated correlations

from either RSDECO or DECO are very close to the true values. The MAD statistic tends

to favour RSDECO when the DPG is either DGP 2 or DGP 3, regardless of the number

of series. However, the results for the MAE are mixed. In conclusion, the error measure

statistics do not provide conclusive evidence in favour of one model over the other but

show that the RSDECO model tends to perform better when the data-generating process

is subject to structural breaks as well as switching regimes. It is worth noting that the

same qualitative result is obtained for a different number of series, suggesting that both

RSDECO and DECO deal well with the high dimensional problem.

Figure 1: Simulated results for DGP 1-DGP 3
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Figure 2: Simulated results for DGP 4
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Table 2: Error measures of correlation estimates MSE
(MAD)

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5
50 series:
RSDECO 0.023

(0.124)
0.033
(0.073)

0.034
(0.009)

0.045
(0.055)

0.045
(0.055)

DECO 0.006
(0.060)

0.018
(0.087)

0.023
(0.054)

0.028
(0.044)

0.028
(0.044)

100 series:
RSDECO 0.021

(0.119)
0.032
(0.076)

0.032
(0.005)

0.042
(0.051)

0.042
(0.051)

DECO 0.006
(0.061)

0.017
(0.087)

0.022
(0.050)

0.028
(0.045)

0.028
(0.045)

200 series:
RSDECO 0.024

(0.125)
0.034
(0.075)

0.034
(0.003)

0.046
(0.056)

0.046
(0.056)

DECO 0.005
(0.057)

0.015
(0.078)

0.020
(0.052)

0.025
(0.043)

0.025
(0.043)

400 series:
RSDECO 0.023

(0.124)
0.032
(0.071)

0.033
(0.002)

0.044
(0.051)

0.044
(0.051)

DECO 0.018
(0.117)

0.028
(0.080)

0.036
(0.080)

0.042
(0.044)

0.042
(0.044)

MAE: Mean Absolute Error. In brackets, MAD: Mean Absolute Deviation
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Figure 3: Simulated results for DGP 5

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
DGP 5 (block 1)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
DGP 5 (block 2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
DGP 5 (block 3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
DGP 5 (block 1/2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
DGP 5 (block 1/3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
DGP 5 (block 2/3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(R-Block 1)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(R-Block 2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(R-Block 3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(R-Block 1/2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(R-Block 1/3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(R-Block 2/3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(F-Block 1)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(F-Block 2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(F-Block 3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(F-Block 1/2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(F-Block 1/3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
RSDECO(F-Block 2/3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
DECO(R-Block 1)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(R-Block 2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(R-Block 3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(R-Block 1/2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(R-Block 1/3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(R-Block 2/3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

0

0.5

1
DECO(F-Block 1)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(F-Block 2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(F-Block 3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(F-Block 1/2)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(F-Block 1/3)

1
  
 

4
0
0
 

8
0
0
 

1
2
0
0

1
6
0
0

2
0
0
0

-0.5

0.25

1
DECO(F-Block 2/3)

4 Empirical application

We use the three specifications of the RSDECO model to estimate conditional correla-

tions between commodity futures, stock indices and bonds. The advantage of using the

RSDECO, and especially its Block versions, to deal with this issue is not only to detect

structural changes in correlation dynamics but also to be able to provide an accurate mea-

sure of both intra and inter-commodity, stock and bond-group correlations. The common

strategy in previous papers in measuring intra and inter-commodity group correlations is

respectively to either calculate the average of all pairwise correlations or to use indices.

In the case of the RSDECO, inter and intra-commodity group correlations are estimated

measures.
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4.1 Data

The data set is made up of 24 US daily commodity futures, 4 US equity indices (The

MSCI, the Standard & Poors 500, the NASDAQ and the RUSSELL 200), and the one-

year, five-year and ten-year US holding bond returns4 covering the period from January

4th, 2000 to December 29th, 2022. The commodity futures contracts belong mainly to the

Goldman Sachs Commodity Index (GSCI), which is the most popular commodity index.

Our data originated from Bloomberg which constructs and provides continuous price series

from futures data. Commodities can be classified into 5 groups, namely Energy, Industrial

Metals, Precious Metals, Agriculture and Livestock. The full list of commodity futures

series with the group classification can be found in Appendix A. It updates the appendix

in Charlot et al. (2016), who studied 32 commodity futures between 2000 and 2015. All

series are then transformed into first logarithmic differences.

Tables 4, 5 and 6 report summary statistics respectively for the commodity futures

returns, the equity index returns and the bond returns. We take futures returns (changes

in log prices multiplied by 100) and collateralize them with the daily 3-month US Treasury

Bill (T-bill) secondary market rate. Figure 14 in Appendix A shows all data series returns

used for this exercise.

4.2 Empirical Results

We separate our data into three blocks corresponding to commodities, stocks and bonds

and estimate Markov-switching models with two regimes. Figure 4 displays the smoothed

probabilities for the simple RSDECO (sub-figure 4a), the Reduced Block RSDECO (sub-

figure 4b) and the Full Block RSDECO (sub-figure 4c). All of these figures show the same

changes in regimes. The first major change happens towards September 15, 2008 when

we can observe a swift range in regime. It is noteworthy that, before the financial crisis

regime, smoothed probabilities show a slight increase, confirming the view that commodity

financialisation began impacting the correlation between commodity and financial assets
4See in appendix C for the computation of these returns.
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starting from 2004 (Tang and Xiong, 2012; Charlot et al., 2016, among others).5 Finally,

at the end of the sample, we observe the beginning of a return to the first regime.

Figure 4: Smoothed Probabilities.
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Figure 5: Correlations for simple RSDECO.

04/01/00 05/01/04 15/09/08 11/07/11 29/12/15 29/12/22

0.01

0.09

0.16

Figures 5, 6 and 13 display corresponding estimated equicorrelations for the simple

RSDECO, the Reduced Block RSDECO and the Full Block RSDECO models, respec-

tively.

We focus on equicorrelations given by the Full Block RSDECO. Interblock equicor-

relations between the three asset classes changed sign after the financial crisis in 2008.
5This is also in line with theoretical findings of Basak and Pavlova (2016) that all commodity and

commodity-equity correlations rise with financialization.
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The equity-bond and the commodity-bond correlations which were negligible before 2008

become negative after this date. We observe the opposite pattern for the commodity-

equity correlation which becomes more positive after 2008. It is worth noting that all

intra-correlations increase after 2008 but with varying magnitudes reflecting heterogene-

ity across blocks. During the low correlation regime, intra-correlations for different blocks

range on average between 5% and 20%. During the financial crisis regime, while com-

modity intra-correlation rises to only about 15%, equity and bond intra-correlations reach

about 70% and 40%, respectively. Both intra and commodity-equity estimated corre-

lations are consistent with the "loss spiral" view (Brunnermeier and Pedersen (2009);

Kyle and Xiong (2001)) that when the market collapses, investors, especially if they are

leveraged, sell assets to raise liquidity, causing unrelated asset returns to fall, increasing

correlation between them.

As for commodity and equity-bond inter-correlations, results reflect the "flight to qual-

ity" phenomena. Vayanos (2004) has shown that when risk-averse investors experience

a negative wealth effect in times of financial crisis, it reduces their risk-bearing capacity

and leads them to sell risky assets to buy risk-free assets such as government bonds. Dur-

ing the financial crisis regime correlations between commodity and bond returns dropped

from about 0% to about -30%, and that between equity and bond returns from 0% to

about -40%.

The literature on the relationship between oil prices and stock prices can also help to

understand the variations in the sign of the equity-commodity correlation. Killian and

Park. (2009) shows that the impact of an oil price shock on stock prices depends on the

origin of this shock. Before 2008, an increase in commodity prices could be perceived as an

increase in expected inflation. Alquist et al. (2020) explain the positive equity-commodity

correlation after 2008 by a reduction in the inflation premium. In a deflationary context,

an increase in commodity prices is less prone to raise inflation expectations. We can

observe that regime changes become more frequent after 2020. This could be related to

rising uncertainty in the financial market in the context of higher inflation and geopolitical

uncertainty.
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Figure 6: Correlations: 3-Block-RSDECO (Reduced Form).
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Figure 7: Correlations: 3-Block-RSDECO (Full Block).
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Figure 8: Correlations: 7-Block-RSDECO (Full Block).
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Figure 9: Correlations: 7-Block-RSDECO (Full Block).
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Figure 10: Correlations: 7-Block-RSDECO (Full Block).
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Figure 11: Correlations: 7-Block-RSDECO (Full Block).

04/01/00 05/01/04 15/09/08 11/07/11 29/12/15 29/12/22

0

0.05

0.1

Agriculture/Livestocks

04/01/00 05/01/04 15/09/08 11/07/11 29/12/15 29/12/22

0.05

0.1

0.15

Agriculture/Soft

04/01/00 05/01/04 15/09/08 11/07/11 29/12/15 29/12/22

0

0.05

0.1

Agriculture/Equity Indices

04/01/00 05/01/04 15/09/08 11/07/11 29/12/15 29/12/22

-0.06

-0.04

-0.02

0
Agriculture/Bond Returns

25



Figure 12: Correlations: 7-Block-RSDECO (Full Block).
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Figure 13: Correlations: 7-Block-RSDECO (Full Block).

04/01/00 05/01/04 15/09/08 11/07/11 29/12/15 29/12/22

-0.3

-0.2

-0.1

0
Equity Indices/Bond Returns

26



5 Conclusion

In this paper we have extended the Engle and Kelly (2012) DECO model with a Markov

switching model. Our model is therefore able to estimate conditional correlations for a

large number of assets, while taking into account level shifts of these correlations. From

an econometric point of view, our model could be extended in several directions. A first

possible extension would be to consider independent regime-switching for each block.

This would allow us to uncover different degrees of persistence between regimes. Another

possible extension would be to consider time-varying transition probabilities as in Diebold

et al. (1994) and Filardo (1994). The literature on stock-bond and stock-commodity

correlations has shown the importance of macroeconomic or financial variables in shaping

these correlations.

Given the practical interest of our RS-DECO, it would be interesting to evaluate

its performance in financial applications such as portfolio selection or risk management.

Recently, Moura and Ruiz (2020) compared the performance of several DCC-type mod-

els and stochastic volatility-type models to select mean-variance and minimum-variance

portfolios with up to 1000 assets. The authors confirm previous results of Engle et al.

(2019) and De Nard et al. (2021), who find that DCC-type models give satisfactory results

when the objective is to select the minimum variance portfolio. It would be interesting

to compare the performance of the RS-DECO with the results obtained in these works.
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Appendix

A Dataset

Table 3: Commodity futures data

Commodities Exchange Bloomberg Ticker Contracts GSCI (2023 RPDW)

Energy 61.46%
WTI crude oil NYM CL1-CL15 Every month 21.82%
Heating oil NYM HO1-HO15 Every month 4.62%
Natural gas NYM NG1-NG15 Every month 4.71%
Industrial Metals 10.57%
Aluminum LME LMAHDS (03 and 15) Every month 3.8%
Copper LME LMCADS (03 and 15) Every month 4.34%
Nickel LME LMNIDS (03 and 15) Every month 0.98%
Zinc LME LMZSDS (03 and 15) Every month 0.95%
Precious Metals 4.12%
Gold CMX GC1-GC12 Mar, May, Jul, Sep, Dec 3.73%
Silver CMX SI1-SI13 Mar, May, Jul, Sep, Dec 0.38%
Platinum NYM PL1-PL5 Jan, Apr, Jul, Oct 0
Agriculture 17.97%

1- Grain 14.08%
Corn CBT C1-C11 Jan, Mar, May, Jul, Aug, Nov 5.65%
Soybeans CBT S1-S7 Jan, Mar, May, Jul, Aug, Sep, Oct, Dec 3.60%
Rice CBT RR1-RR7 Mar, May, Jul, Sep, Nov, Jan 0
Oats CME O1-O5 Mar, May, Jul, Sep, Dec 0
Soybean oil CBT BO1-BO10 Jan, Mar, May, Jul, Aug, Sep, Oct, Dec 0
Palm oil MDE KO1-KO10 Jan, Mar, May, Jul, Aug, Sep, Nov 0
Rapseed MDE IJ1-IJ7 Mar, May, Jul, Sep, Dec 0
Wheat CBT W 1-W 10 Mar, May, Jul, Sep, Dec 3.30%
2- Soft 3.89%
Sugar ICE SB1-SB8 Mar, May, Jul, Oct 1.45%
Coffee ICE KC1-KC8 Mar, May, Jul, Sep, Dec 0.93%
Cotton ICE CT1-CT10 Mar, May, Jul, Oct, Dec 1.26%
Livestock 5.85%
Feeder cattle CME FC1-FC8 Jan, Mar, Apr, May, Aug, Sep, Oct 1.04%
Live cattle CME LC1-LC7 Feb, Apr, Jun, Aug, Oct, Dec 2.98%
Lean hogs CME LH1-LH9 Feb, Apr, Jun, Aug, Oct, Dec 1.82%

This table gives details of the 21 commodity futures contracts used in our study to calculate the daily log returns from
January 04, 2000 to December 29, 2022. Commodity futures contracts are generic contracts which refer to as constructing
continuous futures prices series from futures active contract data. For instance, CL1 is the WTI Generic 1st contract, based
on a 1-month WTI contract. Exchange-traded commodity futures markets are given in the second column. The third
and fourth column contain maturity months of futures contracts and their Bloomberg tickers and the last four columns
report the market value weights of each individual commodity within the major commodity indices, principally Standard
and Poor’s Goldman Sachs Commodity Index (GSCI) and Dow Jones UBS Commodity Index (DJ-UBS)as well as Rogers
International Commodity index (RICI) and Thomson Reuters/Jefferis CRB Index (CRB), as of 2023. As commodity
futures expires every one to three months, indices need to specify a rolling rule to transfer weights of the futures from the
expiring period’s contract to the next available contract. The rollover schedules of the GSCI, DJ-UBS, RJ/CRB indices
are business days 5-9, 6-10 and 1-4 respectively. For the RICI index, it runs from the day prior to the last RICI business
day of the month to the first RICI business day of the following month (for more details see RICI handbook). Industrial
metals are traded on LME and daily settlement prices are quoted for the futures contracts to a fixed maturity period of
3- and 15-months.
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Figure 14: Commodity and financial data series returns
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B Descriptive statistics

Table 4: Descriptive statistics: commodity futures returns.

Min Max Mean S. dev. Med. Kurtosis Skewness JB test ∗ ADF test∗∗

WTI -21.6904 13.6439 2.2219e-02 1.9904 0.1192 10.8189 -0.6670 15076.0992
(1.0000e−03)

1.0000
(1.0000e−03)

GN -14.3637 11.1502 1.0279e-02 2.0672 0.0239 5.5543 -0.1375 1581.5100
(1.0000e−03)

1.0000
(1.0000e−03)

Heating oil -14.2911 8.6800 2.8039e-02 1.8059 0.0762 6.4589 -0.3419 2978.9720
(1.0000e−03)

1.0000
(1.0000e−03)

Aluminum -7.7577 5.6535 6.9598e-03 1.2440 0.0000 5.4992 -0.2089 1538.5355
(1.0000e−03)

1.0000
(1.0000e−03)

Copper -10.0806 11.5987 2.5801e-02 1.5555 0.0000 7.7011 -0.0897 5303.5272
(1.0000e−03)

1.0000
(1.0000e−03)

Nickel -16.2926 52.4198 2.3403e-02 2.3308 0.0000 51.1747 1.9009 559585.1770
(1.0000e−03)

1.0000
(1.0000e−03)

Zinc -10.2366 9.4223 1.5618e-02 1.7123 0.0000 6.0051 -0.1494 2185.3337
(1.0000e−03)

1.0000
(1.0000e−03)

Gold -8.9073 7.0349 3.2415e-02 1.0070 0.0348 8.4228 -0.3262 7148.6942
(1.0000e−03)

1.0000
(1.0000e−03)

Platinium -12.0900 11.4702 1.6939e-02 1.3857 0.0701 9.2824 -0.2116 9500.6308
(1.0000e−03)

1.0000
(1.0000e−03)

Silver -15.1007 9.9918 2.6521e-02 1.5414 0.0644 9.8036 -0.7569 11641.1972
(1.0000e−03)

1.0000
(1.0000e−03)

Oat -12.9922 13.6605 1.9385e-02 1.5386 0.0228 8.1289 -0.1908 6338.3436
(1.0000e−03)

1.0000
(1.0000e−03)

Rice -5.8001 6.9191 1.8876e-02 1.2003 0.0000 5.4020 0.1510 1404.3388
(1.0000e−03)

1.0000
(1.0000e−03)

Palm oil -19.2407 12.8202 2.1976e-02 1.3035 0.0000 26.6896 -1.0372 135508.3855
(1.0000e−03)

1.0000
(1.0000e−03)

Rapseed -10.1356 5.7944 2.0671e-02 0.9123 0.0350 10.5672 -0.6777 14161.7165
(1.0000e−03)

1.0000
(1.0000e−03)

Corn -7.5350 9.5711 1.7713e-02 1.3866 0.0000 6.2335 0.0052 2505.4609
(1.0000e−03)

1.0000
(1.0000e−03)

Soybean -7.3224 9.2523 2.1165e-02 1.3675 0.0523 6.2740 -0.2372 2622.4492
(1.0000e−03)

1.0000
(1.0000e−03)

Soybean oil -9.8452 7.2028 2.3065e-02 1.4068 -0.0083 5.7662 -0.0685 1838.0989
(1.0000e−03)

1.0000
(1.0000e−03)

Wheat -8.9381 8.6823 1.8101e-02 1.5343 -0.0300 5.5158 0.0888 1524.2499
(1.0000e−03)

1.0000
(1.0000e−03)

Live cattle -4.7464 4.8486 1.4073e-02 0.7768 0.0292 6.4936 -0.3403 3035.6416
(1.0000e−03)

1.0000
(1.0000e−03)

Feeder cattle -5.3290 4.9783 1.4350e-02 0.8436 0.0267 6.2842 -0.2493 2644.2221
(1.0000e−03)

1.0000
(1.0000e−03)

Lean hogs -7.2361 8.3779 8.9693e-03 1.1676 0.0555 6.4239 -0.1792 2839.9350
(1.0000e−03)

1.0000
(1.0000e−03)

coffee -10.7209 17.2773 5.2532e-03 1.9275 0.0000 6.4981 0.3192 3029.9027
(1.0000e−03)

1.0000
(1.0000e−03)

cotton -8.5500 7.4357 6.7928e-03 1.3701 0.0299 5.7047 -0.1237 1767.5880
(1.0000e−03)

1.0000
(1.0000e−03)

sugar -21.0054 6.9898 1.8428e-02 1.4775 0.0000 12.6677 -0.7362 22915.8633
(1.0000e−03)

1.0000
(1.0000e−03)

Engle DCC test ∗∗a (195.6000)
(0.0000e+00)

∗ In brackets, critical values for the tests. ∗∗ Augmented Dickey-Fuller test.
a∗ In brackets, p-values for the tests. ∗∗ With 5 lags.

This table reports summary statistics for the 21 daily collateralized commodity futures returns from January
04, 2000 to January 15, 2024. We take futures returns (changes in log prices multiplied by 100) and collateralize
them with the daily 3-month US Treasury Bill (T-bill) secondary market rate. Details about commodity futures
contracts and sources are provided in Appendix A.
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Table 5: Descriptive statistics: equity index returns.

Min Max Mean S. dev. Med. Kurtosis Skewness JB test ∗ ADF test∗∗

MSCI -9.9967 11.7616 1.0430e-02 1.0439 0.0595 14.8696 -0.4924 33992.3383
(1.0000e−03)

1.0000
(1.0000e−03)

SP500 -12.7652 10.4236 1.7550e-02 1.2558 0.0570 13.1231 -0.4093 24716.6558
(1.0000e−03)

1.0000
(1.0000e−03)

NASDAQ -13.1492 13.2546 1.7158e-02 1.6036 0.0881 8.8796 -0.1725 8312.1643
(1.0000e−03)

1.0000
(1.0000e−03)

RUS2000 -15.3437 8.9761 2.2663e-02 1.5665 0.0820 9.6830 -0.5389 10980.4489
(1.0000e−03)

1.0000
(1.0000e−03)

Engle DCC test ∗∗a (542.7586)
(0.0000e+00)

∗ In brackets, critical values for the tests. ∗∗ Augmented Dickey-Fuller test.
a∗ In brackets, p-values for the tests. ∗∗ With 5 lags.

This table reports summary statistics for four equity indices belonging the financial asset block. Details about
equity indices and sources are provided in Appendix A.

Table 6: Descriptive statistics: bond returns.

Min Max Mean S. dev. Med. Kurtosis Skewness JB test ∗ ADF test∗∗

1YTB -0.5079 0.5169 7.3040e-03 0.0393 0.0030 24.9285 0.4585 115427.4471
(1.0000e−03)

1.0000
(1.0000e−03)

5YTB -1.5600 2.2110 1.2477e-02 0.2770 0.0074 6.4973 0.0362 2932.1111
(1.0000e−03)

1.0000
(1.0000e−03)

10YTB -2.7483 4.4939 1.7047e-02 0.4885 0.0133 5.9106 0.0435 2031.8698
(1.0000e−03)

1.0000
(1.0000e−03)

∗ In brackets, critical values for the tests. ∗∗ Augmented Dickey-Fuller test.
This table reports summary statistics for three bond returns belonging the financial asset block. Details about
data and sources are provided in Appendix A.
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C Computation of holding bond returns

We expose the method of Jones et al. (1998) to calculate the bond returns. We use the

“daily constant maturity interest rate series" from the Federal Reserve Bank of St. Louis

FRED economic data. The U.S. Treasury bonds have seminannual coupon payments and

the coupon on the hypothetical bonds is half the stated coupon yield. Then the price of

the bond at the beginning of the holding period is equal to its face value. We calculate an

end-of-period price on this bond using the next day’s yield augmented with the accrued

interest rate:

Pn−#hd,t+1 =
2n−1∑
i=1

1
2ynt(

1 + 1
2yn,t+1

)i
+

1 + 1
2ynt(

1 + 1
2yn,t+1

)2n + #holding days
365 ynt

where Pn−#hd,t+1 is the end-of-period price of the bond, n is the number of years the bond

is referring to, t is the time, and ynt is the yield of an n-period bond at time t. The

#hd-return is calculated as;

rt+1 = Pn−#hd,t+1 − 1

The excess returns are calculated using the three-month interest rate as the risk-free rate

that accrues over the holding period,which varies between one and five days because of

weekends and holidays:

re
t+1 = rt+1 − #holding days

365 y3mo,t

The stock and commodity indices are obtained from datastream. The returns on these

indices are calculated as:

rindex,t+1 = Pindex,t+1 − Pindex,t

Pindex,t

The risk-free rate that accrues over the holding period is substracted to obtain the excess

returns:

re
index,t+1 = rindex,t+1 − −#holding days

365 y3mo,t
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