
Web-Appendix: Bet on a bubble asset ? An
optimal portfolio allocation strategy

Gilles de Truchis
Department of Economics (LEO), University of Orléans
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This Web-Appendix is designed to provide complementary results with respect to those

included in the manuscript. It is organized as follows. Section 1 describes the PGP optimi-

sation framework. Section 2 investigates the impact of parameter estimation on portfolio

allocation in a Monte-Carlo experiment, while Section 3 includes additional simulation

results on the economic value of the proposed portfolio allocation strategy relatively to

Section 3 in the main paper. Finally, Section 4 provides a variety of robustness checks with

respect to the empirical application discusses in the main paper.

1 PGP optimisation framework

As discussed in the introduction of the main paper, the polynomial goal programming is

an alternative portfolio allocation approach to the CRRA. We follow Aksarayah and Pala

(2018) to implement the PGP model based on the first four conditional moments of the

return distribution. This approach is not subjected to a Taylor approximation (as the

CRRA utility function case), so the weights it attributes to the portfolio moments cannot

be precisely related to the parameters of a utility function. In this case, the wealth Wt of

the investor is allocated at time t by solving conflicted multi objectives such as maximizing

expected return and skewness and minimizing variance and kurtosis that are weighted with

investor preferences. The PGP model can be defined as

min
(ω,h)

(
1 + |d1 −R∗|

)γ1
+
(
1 + |d2 − V ∗|

)γ2
+
(
1 + |d3 − S∗|

)γ3
+
(
1 + |d4 −K∗|

)γ4
, (1)

s.t. R(ω,h) + d1 = R∗, V(ω,h) − d2 = V ∗, S(ω,h) + d3 = S∗, K(ω,h) − d4 = K∗, di ≥ 0,

where R(ω,h), V(ω,h), S(ω,h), and K(ω,h) denote respectively the expectation, variance, skew-

ness and excess kurtosis of the returns Rt+H conditional on the price level Xt = x for a
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given strategy (ω, h) defined as

Rω,h := E
[
Rt+H |Xt, St

]
, Vω,h := E

[
(Rt+H −Rω,h)

2|Xt, St

]
,

Sω,h := E
[
(Rt+H −Rω,h)

3/V
3/2
ω,h |Xt, St

]
, Kω,h := E

[
(Rt+H −Rω,h)

4/V 2
ω,h|Xt, St

]
− 3,

Besides, R∗, V ∗, S∗, K∗ denote the optima of the subprograms max(ω,h) R(ω,h), min(ω,h) V(ω,h),

max(ω,h) S(ω,h), min(ω,h) K(ω,h), and the γi’s are non-negative parameters weighting the pref-

erence of the investor to pursue optimality of one moment over the others. All these neces-

sary quantities are obtained from the conditional predictive distribution of the MAR(1,1)

process associated with the bubble asset and the GBM dynamics of the bubble-free asset,

as previously. To check the sensitivity of the results to the investor’s appraisal of higher

moments, we consider two cases: one in which the investor allocates the same weight to the

four moments, i.e. γ1=γ2=γ3=γ4=1, hereafter denoted PGP(1,1,1,1), and one in which the

investor pays more attention to the temperance (kurtosis), i.e. γ1=γ2=γ3=1, and γ4=4,

hereafter denoted PGP(1,1,1,4).

2 Monte-Carlo Simulations

This section is designed to check the reliability of our approach to design optimal portfolio

strategies. As the investor does not have perfect knowledge of the parameters of the

distribution of the speculative asset, we investigate the impact of parameter estimation on

portfolio allocation in a Monte-Carlo experiment. We adopt a parametric plug-in estimation

approach and proceed in two steps.1 First, we gauge the sensitivity of the conditional

moments of returns to parameter estimation and then we look into the variability this

induces in the optimal portfolio strategy.

1A model-free non-parametric approach could also be envisaged, but it would engender a dramatic loss
in efficiency, especially for conditioning values Xt = x far away from the central values of the process (Xt),
(see Fries, 2021, Supplementary Material).
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We simulateM = 2000 trajectories ofN = {250, 1000, 5000} observations from the same

MAR(1,1) process as in Section 3 of the paper: (1− 0.9F )(1− 0.1B)Xt = εt where εt
i.i.d.∼

S(1.7, 0.3, 1.5, 15)2. We then estimate the conditional power moments by replacing the

theoretical constants σα
1 , β1, κp, λp. in Proposition 1 in the main paper by their empirical

counterparts computed by plugging-in the MAR(1,1) parameter estimates obtained by

Maximum Likelihood.3

The results are displayed in Figure 1 for prediction horizons h = 1, 3, 5, 10 and con-

ditioning values x ∈ (112, 245) that correspond to the 0.05% and 99.95% quantiles of the

marginal distribution of Xt. These results take the form of a pointwise 5% - 95% interquar-

tile interval of the conditional moment estimators for each sample size N . Notice that the

theoretical conditional moments, based on the true values of the parameters and repre-

sented by a black line, always belong to the empirical interquartile range. More precisely,

the interquantile intervals are narrow around most of the true conditional moments curves,

even for small sample sizes. They are larger for higher-order moments and large horizons

when N = 250 but narrow down fast as the sample size increases. Overall, the plug-in

method appears to be a good way to estimate the conditional moments even when the

conditioning values Xt = x are in the tails of the marginal distribution of the process.

In the second step we hence investigate the impact of parameter estimation on the

selected portfolios. The simulated conditional moments of returns obtained from the ML

estimates of the MAR(1,1) process are plugged in the CRRA portfolio optimization program

to get the optimal portfolio strategi(es) in the form of couples (ω∗, h∗), which define the

part of the wealth to invest in the bubble asset and the horizon of this investment given

that the overall investment horizon is fixed to H = 26 periods, i.e., six-months of weekly

2This choice of parameters makes the process satisfy the rational bubble condition, i.e.[
(φ◦)α−1 + φ•(1− (φ◦)α))

]−1
< 1, (see Remark 4.1 in Fries, 2021)

3To facilitate the estimation, we initialize the parameters of the α stable distribution by relying on the
approach of McCulloch (1986). Provided the ML estimator is consistent, which is the case for the one used
here (see Andrews et al., 2009), the plug-in estimators of the conditional moments will also be consistent.
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Figure 1: Conditional moments of return distribution
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Notes: First four conditional moments of returns when the price series follows a MAR(1,1) process (1 −
0.9F )(1 − 0.13B)Xt = εt with εt

i.i.d.∼ S(1.7, 0.3, 1.5, 15). The conditional moments are obtained for

conditioning values Xt = x ∈ (112, 245), i.e. 99.9% of the probability mass of the marginal distribution

of Xt is supported on this interval. The black line represents the theoretical moments, whereas the gray

shaded areas correspond to the simulated conditional moments based on 2000 draws from the above α-

stable distribution for the three sample sizes. In the latter case the MAR(1,1) parameters are estimated

by Maximum Likelihood and plugged in the formulae of Proposition 1. The results are displayed for three

horizons, h = 1, 3, 5, 10 and three sample sizes, N = 250, 1000, 5000.

5



trading activity. To be more precise, we search for optima (ω∗, h∗) in the set [−1, 1]×[0, 26],

thus allowing short strategies. As the optimization program is likely non-convex, several

strategies may lead to the same terminal wealth, and in this case they are all labeled as

optimal strategies. We round ω∗ to the closest percentage point and report h∗ in weeks.

Besides, by convention, if either ω∗ = 0 or h∗ = 0, we report (ω∗, h∗) = (0, 0). For the

bubble-free asset, we set υ and ς so that the annual return and volatility equal 2%.

Figures 2 and 3 propose a visualization of the optimal investment strategies if the DGP

were known and of the impact of parameter estimation on the selected optimal portfolios

for a CRRA investor with risk aversion parameter γ = 10. For each starting value of the

speculative asset Xt = x defined by a specific quantile of its distribution and each sample

size N , we plot the mass repartition of the estimated strategies across the 2000 simulations

in the share-horizon space. The bigger and redder the dots, the larger the mass of portfolios

falling in that area. Roughly speaking, a red circle corresponds to more than 1000 identical

strategies, a violet one indicate more than 500 identical ones, whereas the smallest blue

dots represent between 5 and 50 identical strategies.4 The optimal strategies under the

hypothesis that the investor knows the parameters of the speculative asset dynamics are

denoted by black target symbols.

While the starting value of St does not matter, the starting value of Xt deeply modifies

the investment landscape. The first figure looks into the case of conditioning values in

the lower conditional quantiles of Xt. The CRRA investor bets on a rising value of the

speculative asset and opts for a full investment in it (ω∗ = 1) over horizons of up to fifteen

weeks ahead, h∗ < 15. This long strategy is the only optimal portfolio allocation in this

setup, i.e., the equilibrium is unique for Xt outside the trough (0.0001 quantile). The

optima from the simulated strategies, denoted by colored dots, are generally concentrated

in the vicinity of the true optimal strategies, which indicates that estimation uncertainty

4We do not report the precise values as they vary from one subplot to another due to the multiple
equilibrium issue discussed earlier and the plot would become too dense to be easily readable.
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does not affect much the portfolio allocation problem. As the sample size N increases, the

estimation becomes even more accurate and more mass gathers around the true optima.

The second figure depicts the case of conditioning values at the median and in the upper

conditional quantiles of Xt. The long strategy, characterized by a share close to 1 invested

over very short intervals, is optimal as we move from the center of the distribution towards

the bubble zone.

Multiple optimal strategies arise as we get to the steepest part of the inflation phase

of the bubble. This comes in hand with different investors betting on different scenarios

according to their risk adversity. Shorting the bubble over a 2-period horizon appears to

be as optimal as investing a certain share of wealth over a horizon between 2 and 7 periods.

Next, in the explosive regime of the 0.99 quantile the optimal strategy is to completely

short the bubble asset over a one-period horizon. Finally, above the 0.99 quantile, i.e. as

the explosive regime becomes more evident, the optimal strategy consists in a fair short

position over 12 to 14 periods, which is consistent with the increasing bubble crash risk.

Additionally, the dispersion of simulation-based strategies around the true ones rapidly

shrinks with the sample size, suggesting that the true optima can indeed be consistently

retrieved after parameter estimation. For the quantiles furthest in the tail, the dispersion

is in the horizon dimension rather than in the share dimension. Estimation uncertainty

on the verge of a bubble crash thus mainly impacts the holding horizon. The results are

robust to the choice of the risk-aversion parameter and to changes in the speculative asset

price data generating process.5

5The results are qualitatively similar to those obtained when using a non-causal AR(1) as a DGP, but
the latter seems to be quite restrictive in practice as it imposes a sudden crash of the bubble. We prefer the
more general MAR(1, 1) specification and accept a loss in efficiency in the case where the causal parameter
should actually be null.
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Figure 2: Optimal portfolio strategies (lower quantiles)

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

Q
0.
00
01

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

Q
0.
00
1

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

Q
0.
01

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

Q
0.
05

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

Q
0.
1

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

Q
0.
2

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

Q
0.
3

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

Q
0.
4

N=250

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

N=1000

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

−1.0
−0.5
0.0
0.5
1.0

0 5 10 15 20

N=5000

+      -
Notes: Mass repartition of the optimal portfolio strategies for the CRRA utility function with γ = 10

when the speculative asset’s parameters are estimated by ML across 2000 simulated trajectories of length

N = 250, 1000, 5000 trading days and for several starting values defined by the quantiles, Q., of the true

marginal distribution of Xt. The DGP for the speculative asset price is a MAR(1,1) process (1−0.9F )(1−
0.1B)Xt = εt with εt

i.i.d.∼ S(1.7, 0.3, 1.5, 15). The results are displayed in the share (vertical axis) - horizon

(horizontal axis) space. The larger and redder the dots, the bigger the proportion of selected portfolios

falling in that area across the 2000 simulations. A black target symbol indicates a true optimal portfolio,

i.e. obtained for the true values of the parameters.
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Figure 3: Optimal portfolio strategies (upper quantiles)
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+      -
Notes: Mass repartition of the optimal portfolio strategies for the CRRA utility function with γ = 10

when the speculative asset’s parameters are estimated by ML across 2000 simulated trajectories of length

N = 250, 1000, 5000 trading days and for several starting values defined by the quantiles, Q., of the true

marginal distribution of Xt. The DGP for the speculative asset price is a MAR(1,1) process (1−0.9F )(1−
0.1B)Xt = εt with εt

i.i.d.∼ S(1.7, 0.3, 1.5, 15). The results are displayed in the share (vertical axis) - horizon

(horizontal axis) space. The larger and redder the dots, the bigger the proportion of selected portfolios

falling in that area across the 2000 simulations. A black target symbol indicates a true optimal portfolio,

i.e. obtained for the true values of the parameters.
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3 Economic Value

This section includes additional simulation results on the economic value of the proposed

portfolio allocation strategy, which are consistent with those in the mail paper. The BP

strategies in Tables 1 to 6 in Subsection 3.1 are based on the first four moments of the

return distribution of the bubble asset, while the BP2 strategies in Tables 7 to 12 (in

Subsection 3.2) rely only on the first two moments. The average of the median terminal

wealth for the three MAR(1,1)-based portfolios is in most cases well above that of the

benchmark portfolios and superior to the invested amount. The only exception is the

worse BP strategy, which in the PGP case is slightly inferior to 1. The positive averages

of the opportunity cost also support these findings. Moreover, the performance of the BP2

strategies is dominated by that of BP, which is consistent with the DGP. Note also that in

the BP2 case there is only one PGP strategy, as the fourth moment, which differentiated

them before, is now irrelevant.

3.1 BP strategies based on the first four moments (BP)

Table 1: CRRA (γ = 5): Relative performance of portfolio strategies

Strategy

BPmean BPinf BPsup EW EW

Wealth
µ 1.018∗/∗ 1.005 1.032∗/∗ 1.003 1.002

σ 0.048 0.048 0.046 0.052 0.006

EW vs MV vs

BPmean BPinf BPsup BPmean BPinf BPsup

OC
µ 0.011 -0.003 0.043 0.010 0.001 0.014

σ 0.062 0.062 0.063 0.046 0.046 0.047

Notes: Our MAR(1,1)-based strategies are compared with the equally weighted (EW ) and
mean-variance (MV ) ones in terms of terminal wealth. The opportunity cost (OC) relatively
to the two benchmark portfolios is also provided. The results take the form of out-of-sample
average and standard deviation over the 1000 simulations. Asteriks (∗/∗) indicate the rejection
of the null hypothesis of Wilcoxon’s test of equality of medians at the 95% level relatively to
each of the two benchmark strategies, EW and MV , respectively.
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Table 2: CRRA (γ = 5): Relative performance of portfolio strategies in positive bubble
period

Strategy

BPmean BPinf BPsup EW MV

Wealth
µ 1.067∗/∗ 1.065∗/∗ 1.069∗/∗ 1.031 1.019

σ 0.021 0.021 0.021 0.030 0.020

vs EW vs MV

BPmean BPinf BPsup BPmean BPinf BPsup

OC
µ 0.025 0.025 0.025 0.012 0. 012 0.019

σ 0.055 0.020 0.020 0.050 0.020 0.020

Notes: see note to Table 1. The results are based only on the cases where the investment is
performed while the first asset exhibits a bubble period, i.e. XT+k = x is beyond the 95%
quantile of the theoretical distribution of the price process.

Table 3: PGP(1,1,1,1): Relative performance of portfolio strategies

Strategy

BPmean BPinf BPsup EW EW

Wealth
µ 1.021∗/∗ 0.995 1.095∗/∗ 1.003 1.002

σ 0.093 0.017 0.019 0.052 0.006

Notes: see note to Table 1.

Table 4: PGP(1,1,1,1): Relative performance of portfolio strategies in positive bubble
period

Strategy

BPmean BPinf BPsup EW MV

Wealth
µ 1.036∗/∗ 0.999∗/∗ 1.055∗/∗ 1.031 1.019

σ 0.038 0.008 0.011 0.030 0.020

Notes: see note to Table 2.

Table 5: PGP(1,1,1,4): Relative performance of portfolio strategies

Strategy

BPmean BPinf BPsup EW EW

Wealth
µ 1.022∗/∗ 0.996 1.101∗/∗ 1.003 1.002

σ 0.007 0.019 0.020 0.052 0.006

Notes: see note to Table 1.

Table 6: PGP(1,1,1,4): Relative performance of portfolio strategies in positive bubble
period

Strategy

BPmean BPinf BPsup EW MV

Wealth
µ 1.044∗/∗ 0.999∗/∗ 1.071∗/∗ 1.031 1.019

σ 0.021 0.011 0.012 0.030 0.020

Notes: see note to Table 2.
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3.2 BP strategies based on the first two moments (BP2)

Table 7: CRRA (γ = 10): Relative performance of BP2 portfolio strategies

Strategy

BPmean BPinf BPsup EW EW

Wealth
µ 1.018∗/∗ 1.006 1.034∗/∗ 1.005 1.001

σ 0.108 0.179 0.180 0.109 0.006

EW vs MV vs

BPmean BPinf BPsup BPmean BPinf BPsup

OC
µ 0.013 0.005 0.027 0.016 0.011 0.028

σ 0.112 0.131 0.133 0.096 0.135 0.177

Notes: Our MAR(1,1)-based strategies are compared with the equally weighted (EW ) and
mean-variance (MV ) ones in terms of terminal wealth. The opportunity cost (OC) relatively
to the two benchmark portfolios is also provided. The results take the form of out-of-sample
average and standard deviation over the 1000 simulations. Asteriks (∗/∗) indicate the rejection
of the null hypothesis of Wilcoxon’s test of equality of medians at the 95% level relatively to
each of the two benchmark strategies, EW and MV , respectively.

Table 8: CRRA (γ = 10): Relative performance of BP2 portfolio strategies in positive
bubble period

Strategy

BPmean BPinf BPsup EW MV

Wealth
µ 1.020∗/∗ 1.002∗/∗ 1.023∗/∗ 1.005 1.001

σ 0.025 0.025 0.026 0.108 0.006

vs EW vs MV

BPmean BPinf BPsup BPmean BPinf BPsup

OC
µ 0.034 0.031 0.036 0.039 0.032 0.046

σ 0.099 0.099 0.010 0.025 0.026 0.025

Notes: see note to Table 7. The results are based only on the cases where the investment is
performed while the first asset exhibits a bubble period, i.e. XT+k = x is beyond the 95%
quantile of the theoretical distribution of the price process.
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Table 9: CRRA (γ = 5): Relative performance of BP2 portfolio strategies

Strategy

BPmean BPinf BPsup EW EW

Wealth
µ 1.018∗/∗ 1.006 1.034∗/∗ 1.005 1.001

σ 0.108 0.179 0.180 0.109 0.006

EW vs MV vs

BPmean BPinf BPsup BPmean BPinf BPsup

OC
µ 0.022 0.018 0.027 0.024 0.016 0.031

σ 0.149 0.149 0.150 0.168 0.169 0.168

Notes: see note to Table 7.

Table 10: CRRA (γ = 5): Relative performance of BP2 portfolio strategies in positive
bubble period

Strategy

BPmean BPinf BPsup EW MV

Wealth
µ 1.028∗/∗ 1.028∗/∗ 1.028∗/∗ 1.005 1.001

σ 0.026 0.026 0.026 0.108 0.006

vs EW vs MV

BPmean BPinf BPsup BPmean BPinf BPsup

OC
µ 0.031 0.031 0.030 0.092 0.003 0.092

σ 0.100 0.100 0.010 0.026 0.026 0.026

Notes: see note to Table 8.

Table 11: PGP : Relative performance of BP2 portfolio strategies

Strategy

BPmean BPinf BPsup EW EW

Wealth
µ 1.017∗/∗ 0.986 1.048∗/∗ 1.005 1.001

σ 0.067 0.078 0.078 0.109 0.006

Notes: see note to Table 7.

Table 12: PGP : Relative performance of BP2 portfolio strategies in positive bubble period

Strategy

BPmean BPinf BPsup EW MV

Wealth
µ 1.019∗/∗ 1.000∗/∗ 1.033∗/∗ 1.005 1.001

σ 0.018 0.011 0.030 0.108 0.006

Notes: see note to Table 8.
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4 Empirical Application

This section includes supplementary results on portfolio allocation with a bubble asset,

where the latter is either the CO2, the Brent or the WTI price. Subsection 4.1 discusses the

case of the Polynomial Goal Programming approach. At the same time, in Subsection 4.2

we analyze the case where one accounts for transaction costs, much relevant for any investor,

and in Subsection 4.3 the case where the BP optimisation exploits only the information

contained in the first two conditional moments, which puts our approach on a more equal

footing with the benchmarks.

4.1 Polynomial Goal Programming (PGP) optimization algorithm

As in the CRRA case presented in the manuscript, we identify the optimal portfolio strate-

gies under PGP based on the in-sample data. Table 13 reports these strateg(y/ies) for a

range of quantiles in the upper half of the distribution of each of the three bubble assets.

Notice that when the conditioning price is in the quantiles close to the center of the dis-

tribution, the investor takes almost no position as the weights are either 0 or very close to

it. In contrast, when the investment takes place further in the bubble period, two types of

comparable optimal – according to the PGP criterion defined – strategies arise: a long and

a short one. The shorter one is characterized by a larger investment share in the bubble

asset over a possibly slightly shorter horizon (down by one to five weeks depending on the

portfolio and the sensitivity of the investor to kurtosis). The investor who weights more

the fourth moment appears to choose more extreme allocations in the bubble asset for both

long and short strategies. Another main difference with respect to the CRRA case is that

the PGP investor does not take the risk to wait until the terminal horizon and see whether

the bubble continues and hence does not short the positions beyond 19 trading weeks for

the 0.99 quantile and above. Still, the more bubblier oil series are characterized by larger
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investment horizons than the CO2, as in the CRRA case.

Table 13: Optimal portfolio strategies under PGP
Panel A: CO2

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

PGP (1,1,1,1) (-0.01,1) (-0.01,1) (-0.01,2) (-0.01,2) (-0.01,2) (-0.02,1) (-0.66,1) (-0.54,1) (-0.5,1)
(w∗, h∗) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0.32,2) (0.29,2) (0.29,2)

(0,0) (0,0) (0,0)

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

PGP(1,1,1,4) (0,0) (0,0) (0,0) (-0.01,1) (-0.01,2) (-0.01,2) (-0.95,1) (-0.79,1) (-0.73,1)
(w∗, h∗) (0,0) (0,0) (0,0) (0.57,1) (0.56,1) (0.52,1)

(0,0)
Panel B: Brent

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

PGP (1,1,1,1) (-0.01,2) (-0.02,2) (-0.02,3) (-0.02,4) (-0.03,3) (-0.04,3) (-0.76,3) (-0.58,3) (-0.53,3)
(w∗, h∗) (0.01,2) (-0.01,4) (-0.01,6) (-0.01,7) (-0.01,7) (0,0) (0.38,6) (0.31,6) (0.28,6)

(0,0) (0,0) (0,0) (0,0) (0,0)

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

PGP(1,1,1,4) (0,0) (0,0) (-0.01,6) (-0.01,7) (-0.01,7) (-0.01,7) (-0.95,4) (-0.73,4) (-0.66,4)
(w∗, h∗) (0,0) (0,0) (0,0) (0,0) (0.63,5) (0.51,5) (0.46,5)

Panel C: WTI
Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

PGP (1,1,1,1) (-0.02,3) (-0.03,4) (-0.04,4) (-0.05,5) (-0.05,6) (-0.06,6) (-0.11,6) (-0.71,6) (-0.67,6)
(0.01,3) (0,0) (0,0) (0,0) (0,0) (-0.01,20) (-0.01,17) (0.38,11) (0.36,11)

(0,0) (0,0) (0,0)

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

PGP(1,1,1,4) (0.01,21) (-0.02,14) (-0.02,15) (-0.03,13) (-0.03,13) (-0.03,12) (-0.06,9) (0.63,8) (0.6,8)
(-0.01,18) (-0.01,20) (-0.03,12) (-0.02,16) (-0.02,16) (-0.02,16) (-0.01,19) (-0.94,8) (-0.88,8)
(-0.02,12) (0.01,22) (-0.01,22) (-0.01,23) (-0.01,24) (-0.01,23) (0,0)

(0,0) (0.02,14) (0.01,21) (0,0) (0,0) (0,0)
(0,0) (0.02,14)

(0,0)

Notes: The table displays the optimal portfolio strategies for each portfolio conditional on the quantile of the
in-sample distribution in which the bubble asset is at the time of the investment. w is reported in percentages of
the investment and h in weeks.

To gauge the performance of our MAR(1,1)-based approach using the optimal strategies

under PGP, we proceed similarly to the case of the CRRA utility function. Table 14 reports

the summary statistics including the average over the out-of-sample of the median and

standard deviation of the number of rebalancings and of the number of investment paths.

Similarly to the CRRA case, the CO2-EUREX Euro bund portfolio is still the most often

rebalanced, while the WTI-US T-bond is the least rebalanced one with small variations

from one quantile to another. Note also that the most dense tree of investment paths under
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PGP corresponds to the CO2-EUREX Euro bund portfolio irrespective of the sensitivity

of the investor to the kurtosis. This is most certainly due to the fact that the optimal

investment horizon h is at most equal to 2 while in the upper quantiles the investor can

chose each time between a long and a short strategy.

Table 14: Number of rebalancings and strategies
Panel A: CO2

P
G
P
(1
,1
,1
,1
) BP10% BP50% BP90% EW MV

MedNoRebalancings 7.000 6.662 7.125 26.000 26.000
σNoRebalancings 3.928 3.788 4.191 0 0
MedNoPaths 8 76 8 1 1
σNoPaths 275.071 2750.47 275.071 0 0

P
G
P
(1
,1
,1
,4
) BP10% BP50% BP90% EW MV

MedNoRebalancings 6.000 6.375 6.2 26.000 26.000
σNoRebalancings 3.382 3.341 3.343 0 0
MedNoPaths 4 40 4 1 1
σNoPaths 120.032 1200.957 120.032 0 0

Panel B: Brent

P
G
P
(1
,1
,1
,1
) BP10% BP50% BP90% EW MV

MedNoRebalancings 7.000 6.549 7.063 26.000 26.000
σNoRebalancings 1.341 1.156 1.382 0 0
MedNoPaths 9 85 9 1 1
σNoPaths 2.689 27.673 2.689 0 0

P
G
P
(1
,1
,1
,4
) BP10% BP50% BP90% EW MV

MedNoRebalancings 6.000 6.098 6.200 26.000 26.000
σNoRebalancings 2.050 1.981 2.139 0 0
MedNoPaths 3 29.5 3 1 1
σNoPaths 1.517 17.33 1.517 0 0

Panel C: WTI

P
G
P
(1
,1
,1
,1
) BP10% BP50% BP90% EW MV

MedNoRebalancings 3.000 2.75 3.000 26.000 26.000
σNoRebalancings 0.978 0.337 1.138 0 0
MedNoPaths 1 7 1 1 1
σNoPaths 0.308 2.758 0.308 0 0

P
G
P
(1
,1
,1
,4
) BP10% BP50% BP90% EW MV

MedNoRebalancings 2.000 1.667 1.000 26.000 26.000
σNoRebalancings 0.43 0.24 0.732 0 0
MedNoPaths 1 3 1 1 1
σNoPaths 0 1.057 0 0 0

Notes: The table displays the average over the out-of-sample of the median and the standard deviation of the
number of rebalancings and optimal portfolio trajectories in the 10% best (BP90%) and worst (BP10%) performing
BP strategies as well as over the full sample of BP strategies (BP50%) with horizon H.

We evaluate the out-of-sample performance of the BP strategies under PGP through
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Table 15: Relative performance of portfolio strategies under PGP: terminal wealth
Panel A: CO2

BP10% BP50% BP90% EW MV
PGP (1,1,1,1) µ 0.992/∗∗∗ 1.061∗/∗∗∗ 1.190∗∗∗/∗∗∗ 1.049 0.922

σ 0.075 0.078 0.178 0.140 0.046

BP10% BP50% BP90% EW MV
PGP (1,1,1,4) µ 0.976∗∗/∗∗∗ 1.049/∗∗∗ 1.149∗∗∗/∗∗∗ 1.049 0.922

σ 0.086 0.076 0.133 0.140 0.046
Panel B: Brent

BP10% BP50% BP90% EW MV
PGP (1,1,1,1) µ 0.978/∗∗∗ 1.055∗/∗∗∗ 1.203∗∗∗/∗∗∗ 1.001 0.921

σ 0.090 0.080 0.159 0.152 0.044

BP10% BP50% BP90% EW MV
PGP (1,1,1,4) µ 0.961∗/∗∗ 1.050∗/∗∗∗ 1.193∗∗∗/∗∗∗ 1.001 0.921

σ 0.099 0.087 0.151 0.152 0.044
Panel C: WTI

BP10% BP50% BP90% EW MV
PGP (1,1,1,1) µ 0.983/∗∗ 1.061∗∗/∗∗∗ 1.137∗∗∗/∗∗∗ 0.990 0.932

σ 0.168 0.094 0.155 0.167 0.056

BP10% BP50% BP90% EW MV
PGP (1,1,1,4) µ 1.065∗∗∗/∗∗∗ 1.068∗∗∗/∗∗∗ 1.080∗∗∗/∗∗∗ 0.990 0.932

σ 0.081 0.081 0.098 0.167 0.056

Notes: The quantiles of our MAR(1,1)-based strategies are compared with the equally weighted (EW ) and mean-
variance (MV ) ones in terms of terminal wealth. The results take the form of out-of-sample average and standard
deviation. Asteriks (∗/∗) indicate the rejection of the null hypothesis of Wilkoxon’s test at the 90%, 95% and 99%
levels.

the terminal wealth criterion. The results are reported in Table 15.6 The distribution of

the wealth seems to be more spread than in the CRRA case, with a BP90% strategy similar

to that in Table 8 of the main paper but with a much inferior BP10% strategy.

Still, the results indicate a positive gain in using our approach relatively to the standard

MV and EW portfolios. Indeed, the return on investment is positive in all three panels

for the median and upper quantiles of the BP approach and both PGP specifications. In

contrast, the EW strategy beats BP10%.

6As the PGP approach is not utility-based, we cannot rely on the opportunity cost as a performance
measure anymore.
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4.2 Transaction costs

We gauge the impact of transaction costs on the performance of our portfolio strategies

relative to the benchmarks in a simple setup where transaction costs are fixed at 0.05%

per unit of investment. The results for the CRRA approach are displayed in Tables 16 and

17, while those for PGP are reported in Table 18. They support the main findings of the

paper, in particular the superiority of the BP approach over the two benchmarks.
Figure 4: EW and MV weights
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In presence of transaction costs, the BP strategies generally register a slightly larger

drop in terminal wealth than the benchmarks: 0.010 vs 0.003 on average. This is specific to

our setup of transaction costs that are proportional to the investment in each asset. Indeed,

although our approach involves sparse rebalancing, the quantities exchanged in each trade

are larger than the sum of those rebalanced daily by the benchmark portfolios. This can

be easily seen if one compares w in Tables 6 of the paper and 13 above with the dynamics

of the weights of the benchmarks displayed in Figure 4. The latter depicts the weights of

the benchmark models obtained within a one-period-ahead rolling window scheme. Their
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slow-varying behaviour suggests very low ajustements of the portfolio and thus very low

proportional transaction costs.

However, even in presence of transaction costs the results indicate a positive gain in

using the BP approach relative to the two benchmarks. It is only in the case of the 10%

worst strategies that the opportunity cost is negative and the EW portfolio is preferred.

Table 16: Relative performance of portfolio strategies under CRRA with transaction costs
Panel A: CO2

BP10% BP50% BP90% EW MV
CRRA (γ = 5) µ 1.048/∗∗∗ 1.059/∗∗∗ 1.070∗/∗∗∗ 1.045 0.922

σ 0.103 0.115 0.125 0.139 0.046
BP10% BP50% BP90% EW MV

CRRA (γ = 10) µ 0.984/∗∗∗ 1.130∗∗∗/∗∗∗ 1.345∗∗∗/∗∗∗ 1.045 0.922
σ 0.071 0.103 0.135 0.139 0.046

Panel B: Brent

BP10% BP50% BP90% EW MV
CRRA (γ = 5) µ 1.032/∗∗∗ 1.038/∗∗∗ 1.061∗∗/∗∗∗ 0.998 0.921

σ 0.073 0.078 0.111 0.152 0.044
BP10% BP50% BP90% EW MV

CRRA (γ = 10) µ 0.983/∗∗∗ 1.074∗∗∗/∗∗∗ 1.221∗∗∗/∗∗∗ 0.998 0.921
σ 0.080 0.099 0.188 0.152 0.044

Panel C: WTI

BP10% BP50% BP90% EW MV
CRRA (γ = 5) µ 1.190∗∗∗/∗∗∗ 1.190∗∗∗/∗∗∗ 1.191∗∗∗/∗∗∗ 0.987 0.932

σ 0.176 0.176 0.175 0.167 0.055
BP10% BP50% BP90% EW MV

CRRA (γ = 10) µ 1.135∗∗∗/∗∗∗ 1.216∗∗∗/∗∗∗ 1.302∗∗∗/∗∗∗ 0.987 0.932
σ 0.188 0.176 0.177 0.167 0.055

Notes: The quantiles of our MAR(1,1)-based strategies are compared with the equally weighted (EW ) and mean-
variance (MV ) ones in terms of terminal wealth. The results take the form of out-of-sample average and standard
deviation. Asteriks (∗/∗) indicate the rejection of the null hypothesis of Wilkoxon’s test at the 90%, 95% and 99%
levels. The transaction costs are fixed at 0.05% per unit of investment.
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Table 17: Relative performance of portfolio strategies under CRRA: opportunity cost (with
transaction costs)

Panel A: CO2

EW vs MV vs
BP10% BP50% BP90% BP10% BP50% BP90%

CRRA (γ = 5)
µ -0.124 0.013 0.024 0.126 0.137 0.148
σ 0.110 0.218 0.226 0.125 0.136 0.147

CRRA (γ = 10)
µ -0.124 0.085 0.300 0.062 0.208 0.424
σ 0.110 0.155 0.179 0.083 0.113 0.142

Panel B: Brent

EW vs MV vs
BP10% BP50% BP90% BP10% BP50% BP90%

CRRA (γ = 5)
µ -0.077 0.041 0.063 0.111 0.118 0.140
σ 0.142 0.220 0.240 0.100 0.104 0.132

CRRA (γ = 10)
µ -0.077 0.076 0.223 0.062 0.153 0.300
σ 0.142 0.201 0.292 0.105 0.126 0.212

Panel C: WTI

EW vs MV vs
BP10% BP50% BP90% BP10% BP50% BP90%

CRRA (γ = 5)
µ -0.055 0.203 0.203 0.258 0.258 0.259
σ 0.132 0.313 0.313 0.219 0.219 0.218

CRRA (γ = 10)
µ -0.055 0.229 0.315 0.203 0.284 0.370
σ 0.132 0.248 0.246 0.205 0.186 0.191

Notes: The quantiles of our MAR(1,1)-based strategies are compared with the equally weighted (EW ) and mean-
variance (MV ) ones in terms of opportunity cost (OC). Transaction costs are fixed at 0.05% per unit of investment.
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Table 18: Relative performance of portfolio strategies under PGP with transaction costs
Panel A: CO2

BP10% BP50% BP90% EW MV
PGP (1,1,1,1) µ 0.984/∗∗∗ 1.051∗/∗∗∗ 1.177∗∗∗/∗∗∗ 1.045 0.922

σ 0.075 0.077 0.174 0.139 0.046

BP10% BP50% BP90% EW MV
PGP (1,1,1,4) µ 0.968∗∗/∗∗∗ 1.041/∗∗∗ 1.139∗∗∗/∗∗∗ 1.045 0.922

σ 0.086 0.075 0.130 0.139 0.046
Panel B: Brent

BP10% BP50% BP90% EW MV
PGP (1,1,1,1) µ 0.968/∗∗∗ 1.045∗/∗∗∗ 1.19∗∗∗/∗∗∗ 0.998 0.921

σ 0.090 0.079 0.155 0.152 0.044
BP10% BP50% BP90% EW MV

PGP (1,1,1,4) µ 0.952∗/∗∗ 1.041∗/∗∗∗ 1.181∗∗∗/∗∗∗ 0.998 0.921
σ 0.100 0.087 0.147 0.152 0.044

Panel C: WTI

BP10% BP50% BP90% EW MV
PGP (1,1,1,1) µ 0.974/∗∗ 1.052∗∗/∗∗∗ 1.127∗∗∗/∗∗∗ 0.987 0.932

σ 0.168 0.094 0.152 0.167 0.055
BP10% BP50% BP90% EW MV

PGP (1,1,1,4) µ 1.056∗∗∗/∗∗∗ 1.059∗∗∗/∗∗∗ 1.072∗∗∗/∗∗∗ 0.987 0.932
σ 0.081 0.080 0.096 0.167 0.055

Notes: see note to Table 16. The transaction costs are fixed at 0.05% per unit of investment.

4.3 First two conditional moments

This setup allows one to study the performance of the bubble portfolio strategies (labeled

BP2) when only the first two conditional moments are taken into account for each of the

three assets. The bubble-asset dynamics is still assumed to follow a MAR(1,1) process

whose estimated parameters are reported in Table 4 of the paper. However, the CRRA

utility maximization program in equation (2) and the PGP model in equation (B.1) rely

only on the first two conditional moments of the distribution of the terminal wealth in this

setup. By comparison with the results of the main paper, the findings here are expected to

shed light on the contribution of third and fourth conditional moments to the performance

of the bubble portfolio strategies.

The resulting optimal portfolio strateg(y/ies) in the form of couples (ω, h) are reported

in Tables 19 and 25, respectively, while the number of rebalancings are displayed in Tables

20 and 26. They highlight shorter positions on longer horizons and less rebalancing than

in the BP case.
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Finally, the performance results are reported in Tables 21 - 24, 27 and 28. Note that in

the BP2 case there is only one PGP strategy, as the fourth moment, which differentiated

them before, is now irrelevant. The performance of BP2 strategies seems to be slightly

better than that of BP for the CO2 data, but the results are more mitigated for the other

two bubble series. We therefore suggest one to rely on the more general four-moments

based approach and use BP2 for sensitivity analysis.

Table 19: Optimal BP2 portfolio strategies under CRRA
Panel A: CO2

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

CRRA (γ = 5) (0.01,1) (-0.04,7) (-0.1,7) (-0.19,7) (-1,7) (-1,8) (-0.16,7) (-0.1,7) (-1,8)
(w∗, h∗) (0,0) (0,0) (0,0) (-0.41,7) (-1,8) (-1,8) (-0.09,7)

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

CRRA (γ = 10) (0.01,1) (-0.02,8) (-0.05,7) (-0.09,7) (-1,9) (-1,10) (-1,10) (-1,11) (-1,11)
(w∗, h∗) (0,0) (0,0) (0,0)

Panel B: Brent
Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

CRRA (γ = 5) (0.07,1) (-0.03,26) (-0.1,24) (-0.19,24) (-0.33,24) (-1,25) (-1,26) (-1,26) (-1,26)
(w∗, h∗) (0.02,18) (0.03,1) (0,0) (-0.42,24) (-0.19,24) (-0.11,24)

(0,0) (0,0)

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

CRRA (γ = 10) (0.06,1) (-0.01,26) (-0.05,25) (-0.09,25) (-1,26) (-1,26) (-1,26) (-1,26) (-1,26)
(w∗, h∗) (0.01,18) (-0.02,24) (0.02,1)

(0,0) (0.05,1) (0,0)
(0,0)

Panel C: WTI
Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

CRRA (γ = 5) (0.02,1) (-0.02,26) (-0.08,26) (-0.22,26) (-1,26) (-1,26) (-1,26) (-1,26) (-1,26)
(w∗, h∗) (0.01,26) (0.02,1) (0.02,1)

(0,0) (0,0) (0,0)

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

CRRA (γ = 10) (0.02,1) (-0.01,26) (-0.04,26) (-1,26) (-1,26) (-1,26) (-1,26) (-1,26) (-1,26)
(w∗, h∗) (0,0) (0.03,1) (0.04,1)

(0,0)

Notes: The Table displays the optimal portfolio strategies (w∗, h∗) for each portfolio conditional on the quantile of
the in-sample distribution in which the bubble asset is at the time of the investment. w is reported in percentages
of the investment and h in weeks.
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Table 20: Number of rebalancings and BP2 strategies under CRRA
Panel A: CO2

C
R
R
A

(γ
=

5) BP10% BP50% BP90% EW MV
µNoRebalancings 3.000 3.000 3.000 26.000 26.000
σNoRebalancings 0.611 0.471 0.642 0 0
µNoPaths 1 1 1 1 1
σNoPaths 0 0.653 0 0 0

C
R
R
A

(γ
=

10
) BP10% BP50% BP90% EW MV

µNoRebalancings 3.462 3.333 3.333 26.000 26.000
σNoRebalancings 0.813 0.572 0.461 0 0
µNoPaths 10 101 10 1 1
σNoPaths 17.206 181.978 17.215 0 0

Panel B: Brent

C
R
R
A

(γ
=

5) BP10% BP50% BP90% EW MV
µNoRebalancings 2.000 2 .000 2.000 26.000 26.000
σNoRebalancings 0.173 0.085 0.121 0 0
µNoPaths 1 1 1 1 1
σNoPaths 0 0.398 0 0 0

C
R
R
A

(γ
=

10
) BP10% BP50% BP90% EW MV

µNoRebalancings 2.000 2 .000 2.000 26.000 26.000
σNoRebalancings 0.405 0.364 0.642 0 0
µNoPaths 1 1 1 1 1
σNoPaths 2.817 29.92 2.817 0 0

Panel C: WTI

C
R
R
A

(γ
=

5) BP10% BP50% BP90% EW MV
µNoRebalancings 2.000 2.000 2.000 26.000 26.000
σNoRebalancings 0.171 0.149 0.606 0 0
µNoPaths 1 1 1 1 1
σNoPaths 0 0.813 0 0 0

C
R
R
A

(γ
=

10
) BP10% BP50% BP90% EW MV

µNoRebalancings 2.000 3.333 3.333 26.000 26.000
σNoRebalancings 0.593 0.572 0.461 0 0
µNoPaths 1 101 10 1 1
σNoPaths 0.708 181.978 17.215 0 0

Notes: The table displays the average over the out-of-sample of the median and the standard deviation of the
number of rebalancings and portfolio trajectories in the 10% best (resp. worst) performing BP strategies, BP90%

(resp. BP10%) as well as over the full sample of MAR strategies with horizon H (BP50%).
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Table 21: Relative performance of BP2 portfolio strategies under CRRA (without transac-
tion costs)

Panel A: CO2

BP10% BP50% BP90% EW MV
CRRA (γ = 5) µ 0.999∗/∗∗∗ 1.007/∗∗∗ 1.026/∗∗∗ 1.049 0.922

σ 0.234 0.236 0.247 0.140 0.046

BP10% BP50% BP90% EW MV
CRRA (γ = 10) µ 0.939∗∗∗/∗∗∗ 1.116∗∗∗/∗∗∗ 1.346∗∗∗/∗∗∗ 1.049 0.922

σ 0.122 0.119 0.132 0.140 0.046

Panel B: Brent

BP10% BP50% BP90% EW MV
CRRA (γ = 5) µ 1.192∗∗∗/∗∗∗ 1.192∗∗∗/∗∗∗ 1.194∗∗∗/∗∗∗ 1.001 0.921

σ 0.175 0.174 0.173 0.152 0.044

BP10% BP50% BP90% EW MV
CRRA (γ = 10) µ 1.108∗∗∗/∗∗∗ 1.154∗∗∗/∗∗∗ 1.230∗∗∗/∗∗∗ 1.001 0.921

σ 0.166 0.157 0.189 0.152 0.044

Panel C: WTI

BP10% BP50% BP90% EW MV
CRRA (γ = 5) µ 1.247∗∗∗/∗∗∗ 1.248∗∗∗/∗∗∗ 1.253∗∗∗/∗∗∗ 0.990 0.932

σ 0.194 0.193 0.189 0.167 0.056

BP10% BP50% BP90% EW MV
CRRA (γ = 10) µ 1.146∗∗∗/∗∗∗ 1.246∗∗∗/∗∗∗ 1.325∗∗∗/∗∗∗ 0.990 0.932

σ 0.188 0.186 0.190 0.167 0.056

Notes: The quantiles of our MAR(1,1)-based strategies are compared with the equally weighted (EW ) and mean-
variance (MV ) ones in terms of terminal wealth. The results take the form of out-of-sample average and standard
deviation. Asteriks (∗/∗) indicate the rejection of the null hypothesis of Wilkoxon’s test at the 90%, 95% and 99%
levels.
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Table 22: Relative performance of BP2 portfolio strategies under CRRA (with transaction
costs)

Panel A: CO2

BP10% BP50% BP90% EW MV
CRRA (γ = 5) µ 0.988∗/∗∗∗ 0.996/∗∗∗ 1.015/∗∗∗ 1.045 0.922

σ 0.231 0.234 0.244 0.139 0.046
BP10% BP50% BP90% EW MV

CRRA (γ = 10) µ 0.928∗∗∗/∗∗∗ 1.099∗∗∗/∗∗∗ 1.326∗∗∗/∗∗∗ 1.045 0.922
σ 0.122 0.113 0.131 0.139 0.046

Panel B: Brent

BP10% BP50% BP90% EW MV
CRRA (γ = 5) µ 1.181∗∗∗/∗∗∗ 1.182∗∗∗/∗∗∗ 1.183∗∗∗/∗∗∗ 0.998 0.921

σ 0.174 0.174 0.172 0.152 0.044
BP10% BP50% BP90% EW MV

CRRA (γ = 10) µ 1.098∗∗∗/∗∗∗ 1.143∗∗∗/∗∗∗ 1.218∗∗∗/∗∗∗ 0.998 0.921
σ 0.165 0.156 0.187 0.152 0.044

Panel C: WTI

BP10% BP50% BP90% EW MV
CRRA (γ = 5) µ 1.236∗∗∗/∗∗∗ 1.237∗∗∗/∗∗∗ 1.242∗∗∗/∗∗∗ 0.987 0.932

σ 0.193 0.192 0.188 0.167 0.055
BP10% BP50% BP90% EW MV

CRRA (γ = 10) µ 1.136∗∗∗/∗∗∗ 1.235∗∗∗/∗∗∗ 1.314∗∗∗/∗∗∗ 0.987 0.932
σ 0.187 0.185 0.188 0.167 0.055

Notes: see note to Table 21. The transaction costs are fixed at 0.05% per unit of investment.
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Table 23: Relative performance of BP2 portfolio strategies under CRRA: opportunity cost
Panel A: CO2

EW vs MV vs
BP10% BP50% BP90% BP10% BP50% BP90%

CRRA (γ = 5)
µ -0.050 -0.042 -0.023 0.077 0.085 0.104
σ 0.323 0.325 0.334 0.249 0.251 0.262

CRRA (γ = 10)
µ -0.110 0.067 0.297 0.017 0.194 0.424
σ 0.201 0.180 0.167 0.134 0.131 0.132

Panel B: Brent

EW vs MV vs
BP10% BP50% BP90% BP10% BP50% BP90%

CRRA (γ = 5)
µ 0.191 0.191 0.193 0.271 0.271 0.273
σ 0.302 0.302 0.302 0.204 0.204 0.203

CRRA (γ = 10)
µ 0.107 0.153 0.229 0.187 0.233 0.309
σ 0.258 0.256 0.294 0.191 0.185 0.217

Panel C: WTI

EW vs MV vs
BP10% BP50% BP90% BP10% BP50% BP90%

CRRA (γ = 5)
µ 0.257 0.257 0.263 0.315 0.316 0.321
σ 0.336 0.335 0.336 0.238 0.237 0.236

CRRA (γ = 10)
µ 0.156 0.255 0.335 0.214 0.314 0.394
σ 0.285 0.239 0.250 0.205 0.190 0.202

Notes: The quantiles of our MAR(1,1)-based strategies are compared with the equally weighted (EW ) and
mean-variance (MV ) ones in terms of opportunity cost (OC).

27



Table 24: Relative performance of BP2 portfolio strategies under CRRA: opportunity cost
(with transaction costs)

Panel A: CO2

EW vs MV vs
BP10% BP50% BP90% BP10% BP50% BP90%

CRRA (γ = 5)
µ -0.124 -0.049 -0.003 0.067 0.074 0.093
σ 0.110 0.322 0.331 0.246 0.248 0.259

CRRA (γ = 10)
µ -0.124 0.054 0.281 0.007 0.178 0.404
σ 0.110 0.175 0.163 0.134 0.123 0.130

Panel B: Brent

EW vs MV vs
BP10% BP50% BP90% BP10% BP50% BP90%

CRRA (γ = 5)
µ -0.077 0.184 0.186 0.261 0.261 0.263
σ 0.142 0.301 0.301 0.203 0.203 0.202

CRRA (γ = 10)
µ -0.077 0.145 0.220 0.177 0.222 0.297
σ 0.142 0.255 0.292 0.190 0.184 0.215

Panel C: WTI

EW vs MV vs
BP10% BP50% BP90% BP10% BP50% BP90%

CRRA (γ = 5)
µ 0.191 0.191 0.193 0.271 0.271 0.273
σ 0.302 0.302 0.302 0.204 0.204 0.203

CRRA (γ = 10)
µ 0.107 0.153 0.229 0.187 0.233 0.309
σ 0.258 0.256 0.294 0.191 0.185 0.217

Notes: see note to Table 23. Transaction costs are fixed at 0.05% per unit of investment.

Table 25: Optimal BP2 portfolio strategies under PGP
Panel A: CO2

Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

PGP (-0.01,7) (-0.11,7) (-0.23,7) (-0.38,7) (-0.55,7) (-0.54,7) (-0.28,7) (-0.18,7) (-0.17,7)
(w∗, h∗) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Panel B: Brent
Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

PGP (0.04,23) (-0.09,23) (-0.23,24) (-0.4,23) (-0.55,23) (-0.54,23) (-0.31,24) (-0.2,23) (-0.18,24)
(w∗, h∗) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Panel C: WTI
Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

PGP (0.01,26) (-0.06,26) (-0.18,26) (-0.37,26) (-0.69,26) (-0.95,26) (-0.97,26) (-0.37,26) (-0.35,26)
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Notes: The Table displays the optimal portfolio strategies (w∗, h∗) for each portfolio conditional on the quantile of
the in-sample distribution in which the bubble asset is at the time of the investment. w is reported in percentages
of the investment and h in weeks.
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Table 26: Number of rebalancings and BP2 strategies under PGP

Panel A: CO2

P
G
P
(1
,1
,1
,1
) BP10% BP50% BP90% EW MV

MedNoRebalancings 4 4 4 67 67
σNoRebalancings 0 0 0 0 0
MedNoPaths 1 1 1 1 1
σNoPaths 0 0 0 0 0

P
G
P
(1
,1
,1
,4
) BP10% BP50% BP90% EW MV

MedNoRebalancings 4 4 4 67 67
σNoRebalancings 0 0 0 0 0
MedNoPaths 1 1 1 1 1
σNoPaths 0 0 0 0 0

Panel B: Brent

P
G
P
(1
,1
,1
,1
) BP10% BP50% BP90% EW MV

MedNoRebalancings 2 1.5 1 68 68
σNoRebalancings 0.477 0 0.477 0 0
MedNoPaths 1 2 1 1 1
σNoPaths 0 0 0 0 0

P
G
P
(1
,1
,1
,4
) BP10% BP50% BP90% EW MV

MedNoRebalancings 2 1.5 1 68 68
σNoRebalancings 0.477 0 0.477 0 0
MedNoPaths 1 2 1 1 1
σNoPaths 0 0 0 0 0

Panel C: WTI

P
G
P
(1
,1
,1
,1
) BP10% BP50% BP90% EW MV

MedNoRebalancings 2 2 2 67 67
σNoRebalancings 0.386 0.215 0.239 0 0
MedNoPaths 1 1 1 1 1
σNoPaths 0 0.43 0 0 0

P
G
P
(1
,1
,1
,4
) BP10% BP50% BP90% EW MV

MedNoRebalancings 2 2 2 67 67
σNoRebalancings 0.386 0.215 0.239 0 0
MedNoPaths 1 1 1 1 1
σNoPaths 0 0.43 0 0 0

Notes: The table displays the average over the out-of-sample of the median and the standard deviation of the
number of rebalancings and portfolio trajectories in the 10% best (resp. worst) performing BP strategies, BP90%

(resp. BP10%) as well as over the full sample of MAR strategies with horizon H (BP50%).
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Table 27: Relative performance of BP2 portfolio strategies under PGP (without transaction
costs)

Panel A: CO2

BP10% BP50% BP90% EW MV
PGP µ 1.024/∗∗∗ 1.024/∗∗∗ 1.024/∗∗∗ 1.049 0.922

σ 0.088 0.088 0.088 0.140 0.046
Panel B: Brent

BP10% BP50% BP90% EW MV
PGP µ 1.024/∗∗∗ 1.038/∗∗∗ 1.052∗/∗∗∗ 1.001 0.921

σ 0.090 0.081 0.074 0.152 0.044
Panel C: WTI

BP10% BP50% BP90% EW MV
PGP µ 1.229∗∗∗/∗∗∗ 1.240∗∗∗/∗∗∗ 1.252∗∗∗/∗∗∗ 0.990 0.932

σ 0.191 0.187 0.188 0.167 0.056

Notes: The quantiles of our MAR(1,1)-based strategies with first two moments are compared with the equally
weighted (EW ) and mean-variance (MV ) ones in terms of terminal wealth. The results take the form of out-of-
sample average and standard deviation. Asteriks (∗/∗) indicate the rejection of the null hypothesis of Wilkoxon’s
test at the 90%, 95% and 99% levels.

Table 28: Relative performance of BP2 portfolio strategies under PGP (with transaction
costs)

Panel A: CO2

BP10% BP50% BP90% EW MV
PGP µ 1.014/∗∗∗ 1.014/∗∗∗ 1.014/∗∗∗ 1.045 0.922

σ 0.088 0.088 0.088 0.139 0.046
Panel B: Brent

BP10% BP50% BP90% EW MV
PGP µ 1.016/∗∗∗ 1.030/∗∗∗ 1.045∗/∗∗∗ 0.998 0.921

σ 0.091 0.081 0.072 0.152 0.044
Panel C: WTI

BP10% BP50% BP90% EW MV
PGP µ 1.219∗∗∗/∗∗∗ 1.230∗∗∗/∗∗∗ 1.241∗∗∗/∗∗∗ 0.987 0.932

σ 0.189 0.186 0.187 0.167 0.055

Notes: see note to Table 27. The transaction costs are fixed at 0.05% per unit of investment.
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