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1 Introduction

The global oil market has faced recurrent episodes of pronounced volatility, driven by both
demand and supply shocks that produce large price fluctuations. According to projec-
tions from the International Energy Agency (IEA), global supply is expected to broadly
track demand through 2050, though with significant uncertainty reflecting technological,
economic, and geopolitical constraints on resource development.! Intensifying geopolitical
fragmentation over energy and climate policy has further heightened these uncertainties,
underscoring the need to understand how expectations about future oil supply shape

macroeconomic and financial outcomes.

A large body of macroeconomic research emphasizes the role of anticipated changes in
future productivity, so called news shocks, as key drivers of business cycles (Beaudry and
Portier, 2006; Barsky and Sims, 2011; Forni et al., 2014; Beaudry and Portier, 2014; Kur-
mann and Sims, 2021, among others). Building on this foundation, we define oil supply
news shocks as exogenous shifts in the information set used by economic agents to form
expectations about future global oil supply. Despite their conceptual relevance, few em-
pirical studies have successfully identified or quantified these shocks.? Arezki et al. (2017),
for instance, use the exogeneity of discovery timing in oil exploration as a quasi natural
experiment to highlight the role of anticipated supply changes in shaping macroeconomic

outcomes.

More recently, Kénzig (2021) proposed a high frequency identification strategy com-
bining OPEC announcement windows with the proxy SVAR framework to isolate oil
supply news shocks. This approach provides compelling evidence that revisions in oil
supply expectations matter for oil market and macroeconomic dynamics. Yet, it also

raises the issue of whether high-frequency surprises can be treated as clean measures of

1For more details about different scenarios, see "Oil 2024 - Analysis and forecast to 2030".

2This news shock terminology is to be distinguished from the exogenous shock identified using the
news component of either announcement of macroeconomic data releases (Andersen et al., 2003; Ramey,
2011; Kilian and Hicks, 2013, among others) or that used in the monetary policy literature exploiting
central bank announcements to measure monetary policy shocks (Kuttner, 2001; Romer and Romer,
2004; Girkaynak et al., 2005; Bernanke and Kuttner, 2005; Paul, 2020, among others), applied recently
by Kénzig (2021) on the OPEC announcements to identify an oil supply news shock.



low-frequency structural shocks, given potential aggregation and measurement problems
highlighted by Kilian (2024). Moreover, Kilian and Zhou (2023) and Degasperi et al.
(2025) argue that these OPEC-related surprises are better interpreted as shifts in broader
oil price expectations rather than pure supply news. Of particular importance in the
context of our paper, Plagborg-Mgller and Wolf (2022) clearly demonstrated the non-
recoverability of Kanzig’s proxy-SVAR in the oil market, highlighting the need to address
this issue. Recent advances by Chahrour and Jurado (2021), Plagborg-Mgller and Wolf
(2022), and Forni et al. (2025) propose alternative frameworks that test or bound recover-
ability in non invertible systems and embed forward looking dynamics explicitly, but the
oil market literature has yet to implement a coherent solution that handles both issues

simultaneously.

Our first contribution, therefore, is to provide such a unified solution. Using a stylized
model of the oil market, we demonstrate that a noncausal structural VAR (NC-VAR)
naturally solves the recoverability problem. The noncausal specification explicitly allows
variables to depend on both past and future shocks. These models, introduced by Lanne
and Saikkonen (2011) and extended to the multivariate setting by (Lanne and Saikko-
nen, 2013; Lanne and Luoto, 2016; Davis and Song, 2020; Velasco, 2023; Gourieroux
and Jasiak, 2023), capture forward-looking behavior consistent with rational expectations
and potentially infinite-variance disturbances (Gouriéroux et al., 2020), while maintain-
ing the stationarity condition. These models have been successfully applied to fiscal
foresight (Nelimarkka, 2017b), technology news (Nelimarkka, 2017a), and the New Key-
nesian Phillips curve (Lanne and Luoto, 2013).> In a closely related approach, Chahrour
and Jurado (2021) provide a recovery-based framework that establishes conditions un-

der which structural shocks can be uniquely identified from two-sided moving average

3Two alternative representations exist for multivariate mixed causal-noncausal processes. The
VMAR(r, s) model of Lanne and Saikkonen (2013) adopts a multiplicative form II(L~1)®(L)Y; = e,
requiring the number of roots in each component to be a multiple of the number of variables. The
VAR(n1,ng2,p) representation of Davis and Song (2020); Gourieroux and Jasiak (2023) instead uses
Y, = Z‘;:l ©;Y;_; + u;, where n; and no indicate the roots outside and inside the unit circle, respec-
tively, without multiplicity constraints. We adopt the VMAR(r, s) form because it separates causal and
noncausal polynomial matrices, allowing economically meaningful structural restrictions on forward- and
backward-looking components. A minor contribution of this paper is to show that the VMAR representa-
tion is necessary for identifying news shocks, as the structural interpretation requires explicit separation
of forward-looking dynamics that is not available in the VAR(nq, ng, p) form.



(MA) representations in non-fundamental environments. However, their recoverability
conditions impose the two-sided lead—lag structure as an assumption rather than testing
whether such a structure is empirically identified in the data. While their framework guar-
antees unique identification given the assumed lead—lag structure, it does not recover the
causal-noncausal decomposition itself, which requires exploiting higher-order moments
that are absent under Gaussianity.* Following Gourieroux and Jasiak (2025), we exploit
non-Gaussianity to break the observational equivalence between fundamental and non
fundamental representations, enabling the identification of true impulse responses to an-
ticipated shocks. However, we still need an identification strategy to isolate a news shock

from the reduced-form error term of the NC-VAR.

Our second contribution is to provide such identification strategy: we adopt the Max-
Share identification strategy a la Chahrour et al. (2023) in a noncausal VAR framework
estimated for standard oil market variables-global oil production, global economic activ-
ity, real oil price, and global oil stocks. In this setting, the oil news shock is defined as
the innovation that maximizes the finite-horizon forecast error variance share of global
oil production. This adaptation requires no external proxies and remains robust to non-
fundamentalness, since the structural shocks are, by construction, non-invertible. A minor
contribution is to provide a framework for computing historical decompositions in non-
causal VAR systems, which extends standard decomposition methods to environments

with forward-looking dynamics.

Finally, exploiting institutional and behavioral differences between OPEC and non
OPEC producers allows us to trace the origins of the identified news shocks. OPEC’s
coordinated production management contrasts with the market driven behavior of non
OPEC producers, yielding distinct supply elasticities and adjustment speeds (Pierru et al.,
2018, 2020; Baumeister and Hamilton, 2024). Disentangling these components reveals that
OPEC-driven shocks dominate aggregate oil supply news and exhibit more pronounced

macroeconomic effects.

4Higher moments or non-Gaussian likelihoods are required for that step, as causal and noncausal
processes are second-moment equivalent under Gaussianity (Rosenblatt, 2000; Davis and Song, 2020;
Gourieroux and Jasiak, 2017; Gouriéroux et al., 2020; Velasco, 2023; Gourieroux and Jasiak, 2023).



Empirically, the data provide strong support for a noncausal, fat tailed specification,
confirming the relevance of a non-fundamental representation of the global oil market.
The identified oil supply news shocks display clear anticipatory features: real oil prices
and inventories increase in the leads, while production and activity fall with delay, con-
sistent with rational expectations storage behavior. Historical decompositions show that
these shocks explain a significant and time varying share of real oil price movements,
especially in the late 1970s-1980s and around 2014, while the COVID-19 collapse appears
demand-driven. At the global and U.S. level, negative oil supply news shocks generate
stagflationary dynamics, raising inflation and uncertainty while weighing on output and
employment. Yet, their effects on equity and financial markets remain limited, suggesting

constrained but not destabilizing spillovers.

The remainder of the paper is organized as follows. Section 2 presents a stylized model
of the oil market that illustrates how non-fundamentalness arises from a news shocks and
demonstrates how the NC-VAR framework resolves the recoverability problem. Section
3 details the NC-VAR specification, impulse response function computation, historical
decomposition, and the Bayesian estimation procedure. Section 4 describes the data,
presents our Max-Share identification strategy. Section 5 reports the baseline results for
the global oil market and extended macroeconomic variables at both global and U.S.
levels. Section 6 disaggregates the analysis to trace the origins of oil supply news shocks,

contrasting OPEC-driven versus non-OPEC production dynamics. Section 7 concludes.

2 Stylised model of the oil market with news shocks

In this section, we consider a stylized rational expectations model of the global oil market
that explains oil price movements driven by expectations about future oil supply. We show
how non-fundamentalness arises from the presence of lagged effects of oil supply shocks
on oil prices, and how the use of a noncausal VAR approach implies the recoverability of
news shocks in the sense of Chahrour and Jurado (2021). Consider a process for global

oil production ¢; that evolves as an AR(1) with both contemporaneous and anticipated



effects®:

G = pqs—1 + X€ + € (1)

where |p| < 1, € is the oil supply news shock following a strong white noise process, and

[ > 1 denotes the anticipation horizon.%

The parameter x > 0 captures the contempo-
raneous impact of the shock on oil production. When y < 1, the anticipated lag term
¢;_; dominates the dynamics of ¢;, which is the key condition for non-fundamentalness to

arise.

Suppose then that the oil price p; (or any forward-looking variable, including invento-

ries, except for capacity constraints) is determined by the following equilibrium condition:

pe = BE¢ (pry1) + ¢ + 11 (2)

where 5 < 1 is a discount factor, ;[-] denotes the conditional expectation with respect to
the information set containing the history of {q, pt, €, ¢}, and 14 is an exogenous distur-
bance (e.g., a demand or speculative shock) that affects the oil price contemporaneously
but is orthogonal to the oil supply news shock: E;[vyip | €4p/] = 0 for all A, . The
inclusion of v; allows the price to respond immediately to factors other than the news
shock, which is empirically relevant as oil prices react to a variety of contemporaneous

disturbances.

The forward-looking solution of equation (2), assuming |5| < 1 for convergence, is
given by the present discounted value of expected future oil supply plus the exogenous

price disturbance:

Dt = i BE (qu45) + 1 (3)

Jj=0

To derive the closed-form expression for p,, we compute E;(g;1;) for j > 0. From

5As in our identification strategy, we allow the news shock to have an immediate impact on oil
production; see Section 4.2

6] > 1 is necessary for non-fundamentalness to be treated within the NC-VAR framework. If [ is equal
to zero, solution exists using in the noncausal VARMA framework where noncausality is located in the
MA part and not in the AR part (Gouriéroux et al., 2020).



equation (1), iterating forward yields:

E:(qev5) =plq + Z P T E (X €4+ Er14int)

(4)

Using Ei(€4x) = 0 for & > 0 and E;(€;44) = €14x for k < 0. As an illustration we present

results for [ = 2, the general case is treated in Appendix B:

Et(qe41) = pgt + €11
9
Ei(qi2) = p ¢ + per—1 + &

Ei(q+5) = Pa+p e+ p e, §>2

Substituting these expressions into equation (3) and collecting terms:

= Z BE(qr4j) + vy
=0
=q; + B(pg: + €-1) + 25] (ijt +0 g+
=2
iﬁp e Y B ey B 4,
7=0 j=1 Jj=2

Evaluating the geometric series:

> 1
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Thus, the equilibrium price is:
1 g 2
=7 —/)5% + 1 _pﬁﬁtfl + m&‘*’%

Gt) + 1y

(10)

(11)

(12)



Substituting the expression for ¢; from equation (1):

1
(x + 52)€t + L€t—1 + 6 2+ 1 (13)

pt:LQt 1+
1—pp 1—pB

1
1—pp 1—pp

The structural moving average representation of (g, p;)’ is:

wl _ | p O e, X+ L Of [e 14)
+52 8 1 72
Pt ﬁ Of [P T—pﬁ+1—pﬁL+1—pBL UK
=B(L)

The process (¢, p)’ is fundamental if and only if |B(z)| # 0 for all |z| < 1. Computing
the determinant:

[B(2)| = x +2° (15)

This polynomial has roots at z = £/—x = =+i,/x. When x < 1, the modulus of
these roots is /X < 1, implying that there exist roots inside the unit circle. There-
fore, the process has a non-fundamental MA representation. In other words, once the
anticipated component of the news shock dominates (y < 1), the observables suffer from
non-fundamentalness and thus no causal VAR representation of (g, p;)" exists for the
structural shocks (Gambetti and Moretti, 2017; Kilian and Liitkepohl, 2017; Gouriéroux
et al., 2020; Nelimarkka, 2017a, among others). To address the non-fundamentalness

issue, we rewrite the system in noncausal form. From equation (1), we have:

(1—=pL)g = (x + L&, = (L + X)& (16)

Rewriting the right-hand side:

(L? +x)er = (1 + XL 7)o (17)



where the polynomial 1 + yz? has roots outside the unit circle when y < 1.7 Thus:

(1= pL)(1+xL™) g = €12 (18)

This shows that ¢; has a noncausal representation with leads.

As shown by Nelimarkka (2017a) and in Appendix B, when a news shock is identified
within the representation (14), the underlying noninvertibility of the MA part can be
addressed by a noncausal VAR representation. More specifically, and thus demonstrates
that a NC-VAR(1, s) representation, with s appropriately chosen to capture the antici-
pation horizon, produces impulse response functions that perfectly match the theoretical
IRFs from the structural model (1)—(2) for any value of y € [0,1). To illustrate the non-
causal representation explicitly, consider the special case y = 0, where the news shock

has no contemporaneous effect on oil production and affects it only with two lags:

Gt = PGi—1 + €2 (19)

In this case, equation (13) simplifies to:

52
1—pp

Pt = L(175—1 + € + €1+ €—2 + (20)

I6; 1
1—pp 1—pp 1—pp
To address the non-fundamentalness issue, we rewrite the system in noncausal form.

From equation (19):

(1 —pL)g = €2 (21)

Using the representation to substitute the shocks in equation (20), p; can be written in

noncausal form:
2

pr=q + Bga + fpﬁqyrz + v (22)

The dynamics of (¢;, p;)’ can then be mapped into a noncausal VAR(1,2) using equa-

"Note that the roots are automatically complex in this case, generating cyclical dynamics.



tions (19) and (22):

0 0 0 0 0 10 [e

L—|" L] 6= A N - (29
p o g o 5 0 pe| 11| ®
(L) ®(L~1)

where TI(L) and ®(L™!) correspond to the causal (with one lag) and the noncausal (with
two leads) polynomials, respectively. Importantly, as these latter matrices are invertible,
p¢ has a two-sided MA representation. The existence of a two-sided MA representation
has a direct implication for the recoverability of the oil supply news shock ¢;, in the sense

of Chahrour and Jurado (2021) and Plagborg-Mgller and Wolf (2022).

Proposition 1. Consider the noncausal VAR(1,2) representation of (q;,p:)’ given by
equation (23), Since |p| <1 and |3| < 1, both TI(L) and ®(L™') have all roots outside the

unit circle. Consequently, (g, p:) admits a two-sided moving average representation:

t _ Z \Ifj t—2—j
Dt j=—o0 Vi—j
where U(z) = ®(27 1) 1I(2)"t. The oil supply news shock €; is then recoverable, i.e., it

satisfies:

€ = E (Et | {QSaps}s€Z)

In other words, € is spanned by all leads and lags of the observable variables (qi, ;)

Proof. The proof follows from the invertibility of the two-sided MA representation. Since
detl(z) = 1 —pz # 0 for |z| < 1 (as |p| < 1) and detP(z) = 1 # 0 for all 2, the
polynomial ¥(z) = ®(271)"'TI(2) " is well-defined and has a two-sided inverse ¥(z)™! =
[I(2)®(27'). Consequently, the structural shocks (€;_2, ;) can be expressed as a two-sided
linear combination of (gs,ps)’ for s € Z. By Chahrour and Jurado (2021), Proposition
1, this implies that the structural shocks are recoverable. Formally, defining y; = (¢, p)’

and u; = (€2, 14)’, we have:

Uy = Z \Ijjilytfj

j=—o00

10



where Ul(z) = Y20 W'z is the two-sided inverse of W(z). This establishes that
the shock ¢, (appearing as €; o in u;) is a linear combination of all leads and lags of the

observables, which is the definition of recoverability. m

In this illustrative example, this proposition establishes that the NC-VAR framework
provides a natural solution to the recoverability problem identified by Plagborg-Mgller
and Wolf (2022) in the context of oil market SVARs with external instruments. While
standard causal VAR representations fail to recover the news shock from past observables
alone (due to non-fundamentalness), the two-sided MA representation of the NC-VAR en-
sures that the shock can be recovered from the entire history and future of the observable
process. We also provide a solution that differs from Chahrour and Jurado (2021) as: while
they establish necessary and sufficient recoverability conditions through a rank condition
on the spectral characteristic matrix—thereby determining whether shocks are identifiable
given a known causal-noncausal structure—our NC-VAR approach simultaneously identi-
fies the lead-lag structure of the data-generating process through non-Gaussian likelihood
and ensures recoverability by construction through the multiplicative VMAR(r, s) of (23)
representation. Furthermore, we show that this multiplicative VMAR(r, s) representation
of Lanne and Saikkonen (2013), which cannot be recast into the VAR(nq, ns, p) framework
with i.i.d. errors proposed by Davis and Song (2020) and Gourieroux and Jasiak (2017).
This incompatibility arises from the rank deficiency of the lead coefficient matrix ®,, a
structural feature stemming from the triangular transmission mechanism of news shocks;

a formal proof following Chapter 4 of Giancaterini (2023) is provided in Appendix A.

In the general case where both the anticipation horizon [ and the contemporaneous
impact parameter y are unknown, the infinite two-sided MA representation must be
truncated for practical estimation. This motivates the use of a flexible NC-VAR(r, s)
specification, where the lag and lead orders (r,s) are determined by the data, thereby
accommodating richer dynamics in which the dependence of oil production ¢; may extend
beyond a single lag; the formal derivation for arbitrary [ > 1 and x € [0,1) is provided in

Appendix B.

11



3 Econometric framework

This section introduces the econometric framework underlying our empirical analysis. We
first present the reduced-form noncausal VAR model and its two-sided moving average
representation and detail the computation of impulse response functions and historical

decompositions.

3.1 The noncausal structural VAR

Consider the Bayesian NC-VAR(r,s) model developed by Lanne and Luoto (2016), where

y; is generated by:

ML) (L )y =e (24)
where the causal polynomial 11 (L) = I,, — II; L — --- — II,.L", the noncausal polynomial
O(LYY=1,—®, L' —-..—d,[7% L is the backward shift operator, and ¢, is a sequence

of independent, identically distributed random vectors with zero mean and a finite positive
definite covariance matrix . The stationarity of the process and the existence of a two-
sided MA representation are guaranteed by the assumption that both matrix polynomials
have their roots outside the unit disc, i.e., detII(z) # 0 and det ® (z) # 0 for |z| < 1.

The process admits a two-sided MA representation:

= > Ve, (=0 (=) () (25)

j=—o00

which can be rewritten to highlight the future-dependent component:
Y = Coypr + -+ Peypps + Z Mie,—; (26)
=0

where the non-zero lead coefficients ®; indicate that y; depends on future values, reflect-
ing the non-fundamental nature of the process. A crucial requirement is that ¢, must be
non-Gaussian. Under Gaussianity, the NC-VAR(r,s) becomes observationally equivalent

to a causal VAR(r + s), making it impossible to separately identify the causal and non-

12



causal dynamics Lanne and Saikkonen (2013). Non-Gaussianity—through higher-order
moments—provides the additional information needed to distinguish leads from lags in
the data-generating process and to identify structural shocks (Gouriéroux et al., 2020;

Gourieroux and Jasiak, 2017, 2023, 2025). We assume a multivariate ¢-distribution for €;:
~1/2
€ =W M (27)

where 17, ~ N (0,%), Ay ~ x3, and X denotes the degrees of freedom. This specifica-
tion generates fat tails for small A and approaches Gaussianity as A — oo. The scalar

/% induces the excess kurtosis required for identification. The Bayesian

volatility factor w; !
estimation follows Lanne and Luoto (2016) using Gibbs sampling with Minnesota-type
priors that shrink lead coefficients more heavily toward zero than lag coefficients. This
helps to attain the unimodalilty when posterior distributions are more likely to be mul-

timodal when estimating the NC-VAR model (Lanne and Luoto, 2016). Details on the

prior specification and the sampling algorithm are provided in Appendix D.

3.2 Impulse response function computation

The computation of impulse response functions (IRFs) in the NC-VAR framework exploits
the two-sided MA representation in equation (25). Given the structural decomposition
of the reduced-form error term in equation (33), where ¢, = Bu, with B = AW, the

structural two-sided MA representation takes the form:

ye= > UpBlyp= Y, Onlisp (28)

h=—o00 h=—00

where ©, = ¥, B denotes the structural impulse response matrix at horizon h. The
response of variable 7 to a unit shock in structural innovation u;, at horizon h is then
given by:

—_ = e;\I/hBej = e;\IIh[le =0;;n (29)

13



where e; is a selection vector with one in position ¢ and zeros elsewhere, w; is the jth
column of the orthogonal rotation matrix W, and ~; = fle represents the jth column of
the structural impact matrix B. A key distinction between the NC-VAR from standard
causal VARs is that the horizon index h ranges over all integers, h € Z, rather than being
restricted to non-negative values. The coefficients ¥, for h < 0 capture the anticipation
effects—the responses of variables to shocks that have not yet materialised but are already
anticipated by forward-looking agents. In practice, the MA coefficient matrices ¥, are
computed by inverting the causal and noncausal polynomials. From equation (25), we
have U(z) = ®(z~!)7!I(z)~! for all z on the unit circle. The coefficients {¥},}5°__ are
obtained via a Laurent series expansion, computed numerically by truncating the infinite
sums at sufficiently large horizons. For the causal part (h > 0), this involves the standard
recursive computation from the inverted lag polynomial II(2)~!. For the noncausal part
(h < 0), the lead polynomial ®(271)~! generates the anticipation coefficients. The cu-

mulated IRFs reported in our empirical analysis are obtained by summing the point-wise

responses: IRF{"(H) = S ©ijn, where the lower bound —s corresponds to the lead
order of the NC-VAR. This cumulation is particularly relevant for variables expressed in
growth rates (such as global oil production), as it recovers the response in levels. The
credible sets displayed in the figures are constructed from the posterior distribution of the
IRFs, obtained by computing the structural IRF for each draw from the Gibbs sampler

and extracting the relevant quantiles across draws.

3.3 Historical decomposition

This section presents the construction of historical decomposition in the noncausal VAR
framework, building directly on the structural two-sided MA representation established
in Section 3.2. From equation (28), the contribution of structural shock j to the observed

value of variable ¢ at time ¢ is defined as

HDY) = Y O, 4 (30)

h=—o00

14



where ©; ;, denotes the (7, j)-th element of the structural impulse response matrix ©, =
U, B at horizon h, and uj4 is the j-th structural shock. By construction, the sum of
contributions from all structural shocks recovers the observed variable: y; ; = Zle H Dg).
This decomposition allows us to assess how much of the observed variation in each variable
at each point in time can be attributed to cumulated oil supply news shocks versus other

structural disturbances.

In practice, the infinite summation in equation (30) must be truncated to a finite
horizon. Due to the stationarity conditions implied by equation (24), the structural MA
coefficients ©), decay exponentially as |h| increases. This property ensures that trunca-
tion at a sufficiently large horizon H;,; introduces negligible approximation error. The

practical implementation thus computes

. H’L’I‘f
~ () _
HD, = Y Oujn-tjen (31)

hszin
where the structural shocks are recovered from the estimated reduced-form residuals via
the relation u; = B~ e;.

A distinctive feature of noncausal VAR models is the possibility of separating the

historical decomposition into anticipation and realization components:

] . —_ -
HD;} =Y Oijn - Ujarn+ D Oijn - Ujsn (32)
h=1 h=0
Anticipation effects Realization effects

The first term captures how future shocks, which are already anticipated by forward-
looking agents, influence current observations. The second term represents the conven-
tional backward-looking contribution from current and past shocks. The Bayesian estima-
tion framework provides a natural approach for quantifying uncertainty in the historical
decomposition. For each posterior draw m = 1,..., M from the Gibbs sampler, we ex-
tract the reduced-form residuals 5£m), the structural impact matrix B and the impulse

response functions @gn). We then compute the structural shocks as a§m> = (B <m>)*1e§m)

and evaluate the historical decomposition according to equation (31). The posterior dis-

15



tribution of H Dg,lt) is characterized by computing pointwise quantiles across the M draws.

4 Empirical strategy

This section describes our empirical implementation of the noncausal VAR framework
developed in Section 3 to identify oil supply news shocks in global oil markets. We first
present the dataset and the baseline specification of our four-variable NC-VAR model, in-
cluding the choice of lag and lead orders and the Bayesian estimation procedure. We then
detail our identification strategy, which adapts the Max-Share methodology of Chahrour
et al. (2023) to the noncausal VAR context to recover the rotation matrix corresponding

to an oil supply news shock.

4.1 Data and estimation set up

Estimation data span the period between January 1974 and July 2025.%8 We estimate a
monthly NC-VAR model using the above standard global oil market endogenous variables

(our baseline model) :
yr = [Awop,, Awip,, RRAC;, Astocks],

where Awop, denotes the percentage change in world oil production, obtained from the US
Energy Information Administration’s Monthly Energy Review, wip, is the growth rate of
the world industrial production proxied by the OECD+6 industrial production proposed
by Baumeister and Hamilton (2019), ¥ RRAC; denotes the real oil price measured by the
refiner acquisition cost (RAC) for imported crude oil and deflated by the US consumer

price index and Astocks; is the proxy for the percentage change in global oil stocks as

8More details about the data and their sources can be found in Appendix C

90ur results are robust when we use the World Industrial Production, the Global Steel Production
Factor, and the Real Commodity Price Factor as the measures of global economic activity discussed in
Baumeister and Guérin (2021). The response of the Kilian index, however, is qualitatively different from
that of the other variables. For brevity, we do not report these results, but they are available upon
request.

16



constructed in Kilian and Murphy (2014).1° Tt should be noted that this variable is very
useful for our analysis not only because it solves the informational deficit of the VAR
system as already explained in Kilian and Murphy (2014), but also because it helps judge
the validity of our oil news shock. When agents anticipate, for example, a future oil
shortfall, they increase their oil stock level, whereas an unanticipated oil supply shortage
has an opposite effect on the stock as agents who did not anticipate this drop in oil supply

will have to draw on their reserves.

The NC-VAR(r,s) models are estimated by employing a lag and lead length of 12 to
capture the full dynamic of observables. This choice enables observables to fully capture
oil supply news innovations when the NC-VAR(r,s) reduces to a standard autoregressive
VAR in the absence of any non-fundamentalness issues. Moreover, the noncausal part

11 Results are based

will have a rich structure if a non-fundamentalness problem arises.
on 10,000 posterior draws obtained after a burn-in period of 50,000 draws. The choice of

priors for our four baseline models is reported in Appendix D.

4.2 QOil supply news shock identification

To implement our identification strategy, we build on the extensive econometric literature
on the identification of news shocks based on the Max-Share methodology (Beaudry and
Portier, 2006; Barsky and Sims, 2011; Forni et al., 2014; Beaudry and Portier, 2014;
Kurmann and Sims, 2021, among others). More precisely, we adapt the identification
procedure of Chahrour et al. (2023) to the noncausal VAR context, to help us to recover
the rotation matrix in the set of admissible representations that correspond to a news

shock.

This approach identifies the oil news shock as the shock that accounts for the largest

fraction of anticipated fluctuations in the variable targeted for identification at relatively

100ur baseline regression uses a similar specification as in Baumeister and Hamilton (2019) and Kilian
and Murphy (2014), except for the global oil stocks variable which is expressed in logarithms before
differentiating it. This is for ease of comparison with related empirical studies, particularly with Kénzig
(2021) and Degasperi et al. (2025).

"This is consistent with the literature, as the pseudo-causal VAR(p) uses p = r + s = 24 (see Kilian
and Zhou, 2023).
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long horizons in the future. This strategy allows us to isolate the anticipated component of
the targeted variable from the unanticipated shocks. Standard identification restrictions

on the reduced-form error terms from the NC-VAR implied by equation (27) are imposed:

€ = UJt_%Th = By, (33)
where the t-distributed structural shock vector, u; = wt_%u;‘ = [ty tpg) ~ tx (L) is a
product of two latent factors, a k-dimensional vector of Gaussian shocks u; ~ N (0, I)
and the volatility term w, %, Denote by W in equation (33) an orthogonal (k x k) matrix
with w; on its ith column, and A a Cholesky factor such that ¥ = AA’. The rotation

matrix B is thus now given by B = AW.

An additional identifying assumption is the imposition of zero restrictions on the lead
coefficient matrices of the noncausal polynomial. Specifically, we constrain the noncausal
polynomial ®(L~!) to have the following block-triangular structure:

0 Opepn
L N=1-0 L — ... — DL, &= PO Rugy, i=1,...,s

Dy Doy ;
(34)

where ¢ = vec(®) denotes the vectorized lead coefficients, ¢, is the ((n?s—s*) x 1) vector
of unrestricted parameters, and Ry is the (n?s x (n%s — s*)) selection matrix that maps

¢, to ¢ while enforcing the s* = n X s zero restrictions.

This restriction serves two purposes. First, by imposing zeros in the first row of
each lead coefficient matrix ®;, we ensure that global oil production does not depend on
future values of any variable in the system. This guarantees that oil production is not a
forward-looking variable and that the structural shock identified in the first position of the
system corresponds exclusively to an oil supply shock, rather than being contaminated by
anticipation effects from other variables. Second, we extend this restriction to the second
row by setting zeros in the position corresponding to world industrial production (i.e.,
we also restrict the (2, 1) block to zero when relevant). This prevents the real oil price—

which occupies the third position in our system—from being polluted by any anticipated
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demand-side dynamics that could otherwise appear through the lead structure of the
NC-VAR. In other words, these restrictions ensure that the forward-looking behavior
captured by the noncausal component is channeled exclusively through the price and
inventory variables, which are the natural forward-looking variables in the oil market,
while production and economic activity remain backward-looking as economic theory
would suggest. The technical implementation of these restrictions within the Bayesian

estimation framework is detailed in Appendix D.!?

Using the two-sided MA representation of the NC-VAR model from (25), the time-t

forecast revision of expected global oil production at horizon 7 is given by:

]E’t [wOpt+T] — Et_l[w0pt+7—] = ell\IfT;leLt (35)

with the vector e; = [1 0 0 0]" selecting global oil production. Our objective is to identify
the first shock as that which best explains the variance of forecast revisions at horizons

between H; and H,. Following Chahrour et al. (2023), we seek to find:

Hy
W™ = argmax ) ey W Aww|AWer st wiw =1 (36)
w1
T=H{

This optimization problem can be solved as an eigenvalue problem. Specifically, the

optimal w, is the eigenvector associated with the largest eigenvalue of the matrix:

Hy

S=Y (V,A) erel (v,4) (37)
T=H;

In contrast with the Barsky and Sims (2011) identification procedure, we do not impose
orthogonality of the shock to current global oil production. This choice is motivated by
two considerations, as discussed in Chahrour et al. (2023) and Kurmann and Sims (2021).
First, due to the two-sided MA representation (25), identifying restrictions on the impact

effects are generally difficult to implement in the noncausal VAR as the timing of the

12Figure 13, in Appendix E, shows the impulse response functions of the baseline model when the zero
restrictions are relaxed (i.e., Ry = Ip25). The results show that the main findings remain qualitatively
unchanged.
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shock is unknown a priori. Second, relaxing the impact effect restriction is potentially
more robust to measurement errors and revisions in global oil production data as well
as to small sample bias involved in long-run identification schemes. However, following
Chahrour et al. (2023), we set H; > 0 to avoid designing an identification scheme that
actively rewards nonzero impulses early on in the response, which would tend to mix
short-term surprises and longer-term anticipated fluctuations in global oil production. We
discuss in the next section our choice of the finite truncation horizons H; and Hs. This
medium-run identification strategy is essentially the same as the Mazx-Share identification
proposed by Uhlig (2004) and Francis et al. (2014), adapted here following Chahrour et al.
(2023).

5 Baseline evidence on oil supply news shocks

In this section, we present the results of the impulse response function analysis of the
oil supply news shock. Recall that in this particular case, the key advantage of the
NC-VAR model lies in providing an attractive solution to the underlying problem of

non-fundamentalness.

Our first step is to check whether a non-fundamental representation is supported by
the data. As pointed out by Lanne and Saikkonen (2013), Gourieroux and Jasiak (2017)
and Davis and Song (2020), the non-Gaussian assumption of the error term is a necessary
and sufficient condition for uniqueness and is thus required in the NC-VAR estimation.
Figure 1 plots the estimated marginal posterior density of the degrees of freedom (DOF)
A. The histogram indicates strong evidence in favor of fat tails as the posterior density is
centered around 3.75 degrees of freedom; with the probability of A\ being greater than 6
at almost nil.'® This suggests that the normality assumption is inappropriate, confirming
the choice of multivariate ¢-distribution for the error term, which makes it possible to
identify a unique NC-VAR(r,s) specification. Therefore, noncausal representation is both

statistically preferred and necessary for the unique identification of structural shocks.

13We set the prior mean of A to 8. With a very low posterior mean of A (less than 5), data dominate
the assumed prior mean of .
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Figure 1: Posterior density of DOF parameter A
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Notes: grey bars represent the frequency distribution of the DOF parameters from the 4-variable
NC-VAR(12,12).

This result aligns with the theoretical arguments of Chahrour and Jurado (2021) and
Gouriéroux et al. (2020) that non-fundamentalness is empirically relevant when expecta-

tions react before physical quantities.

5.1 How does the oil supply news shock diffuse to the oil market

variables?

Figure 2 shows the cumulative impulse responses to an oil supply news shock which is
normalized to correspond to a 10 percent change in the real oil price on impact. This
normalization does not impose any sign restriction. The direction of the price response
is entirely determined by the data through the Max-Share identification. Light and dark
shaded bands represent 90 and 68% posterior credible sets, respectively. In the noncausal
model context, the left side of the x-axis is added to represent responses related to the
lead terms of the MA representation. The news shock is measured with a truncation

horizon of [Hy = 24, Hy = 24] but similar results, reported in Section 5.3, are obtained
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with shorter and longer truncation horizons.

The choice of H1 = 24 and H2 = 24 for the Max-Share identification is economically
justified by the institutional realities of global oil supply dynamics and the rational-
expectations storage mechanism central to the paper. There are different reasons to do
so. First, there is medium-run supply adjustment horizon. Oil production responds to
news with 2-3 year lags, not instantaneously. Geopolitical shocks (Iran Revolution, Gulf
War) or OPEC quota announcements affect extraction decisions with multi-quarter im-
plementation delays due to drilling rig mobilization, field maintenance, and contractual
rigidities. Moreover,empirical evidence shows the identified shock triggers a -4% produc-
tion drop peaking at 2-3 months but stabilizing over 24 months—precisely the window
where news about future supply should dominate forecast revisions. A 24-month horizon
targets this implementation lag where agents update supply expectations before quanti-
ties fully adjust, avoiding short-run noise (H1=3 confounds surprises) or ultra-long-run

contamination (H2=60 mixes permanent trends like shale).

Second, there is inventory precautionary motive. Global oil stocks act as the forward-
looking buffer validating news shocks. Rational storage theory (Baumeister and Hamilton,
2019; Kilian and Murphy, 2014) predicts agents build inventories when expecting future
scarcity within their planning horizon (1-3 years). H1=H2=24 captures the peak pre-
cautionary accumulation (+3% stocks on impact), which requires knowing supply will
be tight over the next two years—mnot 5+ years (H2=60) where storage costs dominate.
Shorter windows miss this dynamic; symmetric 24 perfectly aligns with observed stock

build-up before production falls.

Third, oil prices reflect intertemporal scarcity pricing: a credible 2-year supply shortfall
justifies +10% spot price jumps via convenience yield and risk premia, without requiring
immediate quantity disruption. Futures curves embed expectations over 1-3 years; H1=24
isolates this news premium from high-frequency speculation (too short) or secular trends

(too long).

Finally, all horizons yield similar price IRFs, but 24-month delivers tightest credi-

ble sets, confirming economic relevance over statistical convenience. H1=H2=24 targets
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Figure 2: Impulse-response functions to the oil supply news shock
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Notes: The black solid lines are the posterior median responses of the 4-variable baseline model from Baumeis-
ter and Hamilton (2019). The solid lines are the posterior median cumulated impulse responses of the NC-
VAR(12,12). Shaded areas are the 90 and 68 % credible sets of the NC-VAR(12,12). Because of noncausality,
the impulse responses are located on both sides of zero. The negative side corresponds to the lead terms of the
MA representation of NC-VAR.

OPEC-style news shocks—coordinated quota changes with 1-2 year horizons that domi-
nate historical decompositions (1970s-1980s, 2014-2016). This matches the institutional
fact that most economically-relevant oil supply news arrives via strategic announcements,
not geological surprises, making the identification both data-driven and economically in-

terpretable.

By construction, global oil production exhibits no response at leads under the Max-
Share identification, while a contemporaneous response is allowed. The post-shock dynam-
ics are highly informative: although an impact response is allowed, global oil production
does not adjust instantaneously. Instead, it declines with a short delay, reaching approx-
imately 4 percent within two to three months and then stabilizing at roughly that level.
This pattern reflects the information captured by the Max-Share identification, which is
entirely inferred from the observed production behavior. Given the speed of the response,

the shock is likely driven by news that can influence current extraction decisions-such as
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geopolitical events, strategic announcements (Kanzig, 2021; Pinchetti, 2025) , or tempo-
rary supply disruptions-rather than long-term changes in production capacity arising from
new discoveries (Arezki et al., 2017) or technological innovations. Global real activity also
displays a delayed but long-lived contraction, reaching a trough near 1 percent only after
several years, which is exactly what one expects from a news-driven supply disturbance
that first works through precautionary pricing and intertemporal demand reallocation

before propagating to the real side of the world economy.

But relevant to our analysis, there is clear evidence from the estimated impulse re-
sponses that a substantial proportion of the oil supply reduction triggered by the news
shock can be anticipated before the drop materialises. The median response estimates
from the noncausal model suggest large and significant responses of noncausal components
for the most forward-looking variables, namely the real oil price and global oil stocks. As
for the causal part, after rescaling the impulse responses, the real oil price increases by
10 percent on impact and remains about 5 percent above baseline over the medium run.
Global oil stocks increase on impact by roughly 3 percent (0.06 ppt) and continue to
trend up, confirming the interpretation of the identified disturbance as a genuine news
shock: agents anticipate higher future scarcity and build precautionary stocks rather than

drawing them down as they would after an unanticipated physical disruption.

Overall, Figure 2 shows that once noncausality is allowed, the impulse responses line up
with a rational-expectations storage model with anticipated supply shortfalls: prices and
inventories predictably move first, physical quantities follow with lags, and real activity

reacts more sluggishly but persistently.

5.2 How much the oil supply news shock explains real oil price

fluctuations in different historical episodes?

The question of the origin of oil price fluctuations remains central to the global oil market
analysis (Kilian, 2009; Juvenal and Petrella, 2015; Baumeister and Kilian, 2016; Baumeis-

ter and Hamilton, 2019; Caldara et al., 2019; Kénzig, 2021, among others). In this section
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we rely on the historical decomposition exercise (see Section 3) to get a sense of the overall
importance of oil supply expectation shocks in driving real oil price fluctuations over the

last few decades, and particularly for specific historical episodes.

Figure 3, illustrates the cumulative effect of the oil supply news shocks together with
the actual real oil price for the period 1975-2025. The figure reveals that oil supply news
shocks account for a sizeable and time-varying share of real oil price movements over the
last five decades. More precisely, examining specific historical events, the contribution of
oil supply news shocks to the sharp rise in oil prices following the Iranian Revolution was
strongly negative in the mid to late 1970s. This was followed by a substantial positive
contribution of supply news around the Iran-Iraq War and until late 1985, even as the
real price gradually declined, indicating that other shocks dominated the overall price
movement. During the period 1980-1985, the non-OPEC production increased by about
15% (Gately, 1986). These increases were made by a large number of relatively small
producers whose exploration and development activities had been stimulated by the price
rises of the 1970s, and who had grown sufficiently in size and incurred sufficient fixed
costs not to be discouraged by the price declines of the early 1980s. Thus, the contribu-
tion of expectations of an increase in the oil supply due to new discoveries is at least as
important as the expectation of OPEC’s collapse, when Saudi Arabia abandoned produc-
tion constraints in late 1985 (Kilian and Murphy, 2014; Kéanzig, 2021). Around the time
of the 1986 price collapse, the contribution of news became strongly negative, reflecting
upward revisions to expected future supply arising from both non-OPEC expansions and

the erosion of OPEC’s ability to sustain high prices.

By contrast, during the Gulf War of 1990-91, the news played only a modest role
in explaining the temporary spike. This is consistent with a narrative in which market
participants anticipated compensating production from core OPEC, meaning they did
not revise long-term supply expectations as dramatically as spot prices suggested. Oil
news shocks seem to be better able to explain the trend reversal that took place in the
late 1990s and ended with the onset of the Venezuelan crisis in late 2002. Despite a brief

positive impact prior to the collapse of 2008, the influence of oil supply news remained
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Figure 3: Contribution of oil supply news shocks to real oil price fluctuations
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Notes: The solid blue line shows the average contribution of the oil supply news shock to the real crude oil price,
estimated using the NC-VAR(12,12). The light blue shaded area represents the 90% credible intervals. The solid
black line depicts the demeaned real oil price.

subdued from the mid-2000s until the end of 2013. After this period, its influence turned

strongly negative around the time of the 2014 oil price crash.

Crucially, the events in the global oil market at the onset of the COVID-19 pandemic
in March and April 2020 constitute a key milestone. The unprecedented collapse in oil
prices was driven entirely by an unexpectedly severe contraction in global oil demand.
This episode provides a natural validation check for our shock identification, since oil
supply news shocks should be positive but should not account for the observed price
collapse. Consistent with this interpretation, the historical decomposition shows that the
early-2020 price collapse was entirely demand-driven. Although the contribution of oil
supply news is positive, it does not explain the sharp decline in prices. This supports the
identification strategy, as an unexpected global demand freeze should not be misclassified
as news about future oil supply. Finally, oil supply news shocks play a meaningful role
in explaining the subsequent price recovery following the pandemic, when oil-producing

countries were expected to cut production in response to the demand contraction.
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5.3 What do truncation horizons reveal about oil market infor-

mation?

As noted above, our results are robust to alternative choices of the truncation window and
to different values of H; and Hs used to identify oil supply news shocks in the baseline
model. Figure 4 evaluates this robustness by considering a range of Max-Share truncation
windows, namely (Hy, Hs) € {(6,24),(6,60), (12,24),(12,60), (24,24), (24, 60), (60, 60)}.
Across these specifications, the responses of global oil production, real economic activity,
and oil inventories remain remarkably stable in terms of sign, timing, and persistence.
This stability indicates that the informational content of the identified shock-extracted
from observed oil production-is robust and does not depend on a particular choice of
truncation horizons.

Figure 4: News shock identification with different truncation windows (H;; Hs)
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Notes: The black dashed lines are the posterior median responses of the 4-variable baseline model.

The solid lines are the posterior median cumulated impulse responses of the NC-VAR(6,6). Light

and dark grey shaded regions are the 90 % and 68 % credible sets of the NC-VAR(12,12). Because of

noncausality, the impulse responses are located on both sides of zero. The negative side corresponds

to the lead terms of the MA representation of NC-VAR.
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Although oil inventories are forward-looking, their responses remain largely invariant
to alternative choices of the Max-Share window. This pattern is consistent with rational-
expectations storage models, in which inventories adjust smoothly to anticipated scarcity,
subject to physical, institutional, and strategic constraints. By contrast, the response of
the real oil price is more sensitive to the truncation window. This sensitivity is econom-
ically intuitive and informative: The Max-Share approach is designed to identify shocks
that are predictive of future oil production, rather than to target contemporaneous price
movements. As a forward-looking valuation variable, the real oil price reflects how mar-
kets price information about future supply conditions at different horizons. Consequently,
variations in (H1,H2) affect the timing and magnitude of the price response by shifting
the horizon over which the informational content of the shock becomes most relevant,
without altering the underlying real dynamics. The hump-shaped response peaks early
and decays gradually, with little sensitivity to horizon choice—shorter windows (H1=6)
yield slightly sharper peaks, while longer ones (H2=60) produce smoother but equally
persistent effects. Across all specifications, the price responses are statistically significant
at the 90% credible set (dark shaded areas) from leads -10 through +40 months, with
68% credible sets (light shaded) confirming pointwise significance over even longer hori-
zons. This tight banding around the median trajectory underscores the robustness of the

forward-looking price reaction to identification assumptions.

Sensitivity checks: Figure 14 in Appendix E show that re-estimating the model
using a smaller sample size produces nearly identical benchmark results and continues to
support the interpretation of the identified shock as an oil supply shock. In particular,
impulse responses over the 1974:2-1989:12 sample are virtually indistinguishable from
those of the benchmark specification. A negative shock to oil supply expectations induces
a contraction in oil production, a gradual and persistent decline in global real activity,
and a pronounced increase in both the real oil price and global oil inventories. However,
when using the 1990:1-2025:7 sample, oil production and global real activity continue to
respond negatively and significantly. Conversely, the positive responses of the real oil price

and global oil stocks become statistically weaker. It should be noted that, this result is
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unsurprising and can be explained by the declining contribution of oil supply news shocks
to real oil price fluctuations in the second subsample, as illustrated by the historical
decomposition in Figure 3 discussed the previous section. Moreover, this exercise shows
that our results do not lead to puzzles, a problem pointed out by Degasperi et al. (2025)
when estimating the effects of the oil supply news shock of Kénzig (2021) for shorter
samples. Finally, as we show in the next section, our results are robust to the inclusion

of additional macroeconomic and financial variables in the system.

5.4 What impact does a news shock have on global and US

macroeconomic variables?

The macroeconomic consequences of a negative exogenous oil supply shock have been
extensively debated, both theoretically and empirically, particularly in the context of the
debate on the role of oil shocks in generating stagflation (Hamilton, 1983, 2009; Gisser and
Goodwin, 1986; Barsky and Kilian, 2002, 2004, among others). However, there are fewer
studies on the effect of oil supply expectation shocks on macroeconomic variables (Arezki
et al., 2017; Kénzig, 2021; Degasperi et al., 2025). In this section, we first examine how

this shock affects the global economy more broadly, before looking at the US variables.

Figure 5 extends the analysis to global macro-financial indicators, namely the Global
Economic Conditions (GECON) indicator of Baumeister et al. (2022), the OECD pas-
senger car registrations (PCR_OECD), the global supply chain pressure index (GSCPI),
the OECD consumer confidence index (CCI_OECD), geopolitical risk index (GPR) and

as a financial index, the world stock price index (MSCT)."

It is interesting to note that all global variables, except for the MSCI react significantly
to the negative oil supply news shock. GECON gradually declines, reaching around -1
percent after roughly two years and remains depressed, echoing the slow but sizeable con-
traction in global industrial production. We observe roughly the same reaction from the

passenger car registration, which is in line with the sensitivity of durable consumption and

14The additional variables are included in the system, one variable at a time in order to avoid estimating
a large model.
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Figure 5: Reactions of global macroeconomic variables to a news shock
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Notes: The solid black lines are the posterior median cumulated impulse responses of the NC-VAR(12,12) and
shaded areas represent the 90 and 68 % credible sets. Because of noncausality, the impulse responses are located
on both sides of zero. The negative side corresponds to the lead terms of the MA representation of NC-VAR.

particularly car demand to expected future fuel costs and heightened macro-uncertainty.
The behavior of the Global Supply Chain Pressure Index (GSCPI) is particularly infor-
mative, as its response to anticipated oil supply shocks differs fundamentally from its
response to unanticipated supply disruptions. The GSCPI declines gradually and per-
sistently, indicating that news about future supply shortfalls-unlike unexpected supply
disruptions-may reduce global supply chain pressures by inducing forward-looking adjust-
ments in production, sourcing, and trade volumes. These anticipatory adjustments help

smooth logistics flows and alleviate congestion before the shock materializes.

The geopolitical risk index (GPR) spikes on impact by about 5 points and then grad-
ually declines, remaining persistently around 1 percentage point. However, the response
becomes statistically significant only after approximately two years. This pattern sug-
gests a two-way interaction: geopolitical tensions often generate oil supply news, but
once oil prices and inventories adjust, they in turn validate and reinforce perceptions of

geopolitical risk. Consumer confidence drops immediately and significantly, with the ef-
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fect starting already in the lead terms and stabilizing at a negative level. Finally, the
global stock price index MSCI does not react on impact but subsequently falls sharply
by about 1 percent, although the effect of the shock remains statistically insignificant.
The effect of anticipated oil supply shocks on stock prices appears to be as negligible
as that of unanticipated shocks (Kilian and Park, 2009).'5 This pattern may reflect the
anticipatory nature of oil supply news shocks, the aggregation of offsetting effects across
oil-importing and oil-exporting economies, and the fact that such shocks tend to tighten

financial conditions without posing an immediate threat to global financial stability.

Figure 6: Reactions of US macroeconomic variables to a news shock
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Notes: The solid lines are the posterior median cumulated impulse responses of US macroeconomics variables. Blue
and grey shaded areas are the 90 and 68 % credible sets of the NC-VAR(12,12). Because of noncausality, the impulse
responses are located on both sides of zero. The negative side corresponds to the lead terms of the MA representation.

As for the effect of the oil supply news shock on the US economy, Figure 6 shows

the reactions of US macroeconomic variables'® belonging to different categories spanning

151t is worth noting that, according to Mumtaz et al. (2018), there is evidence of nonlinear stock price
dynamics in response to unanticipated oil supply shocks. Mumtaz et al. (2018) show that the stock price
reaction can be significant during the regime characterized by low oil inflation.

16 All variables come from the FRED database, except for the excess bond premium which
is an updated version of the measure of Gilchrist and Zakrajsek (2012) available from
the Fed website:  https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/updating-the-
recession-risk-and-the-excess-bond-premium-20161006.html
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multiple dimensions of the US economy.

As shown in the top panel of Figure 6, all price variables except core CPI increase
sharply on impact. Headline CPI increases already in the leads, peaks at around 1 percent
on impact, and remains roughly at that higher level thereafter. The Energy CPI shows
anticipatory movement, rising to 2% on impact and remaining at this level, albeit with
a statistically insignificant response. The core CPI, however, remains muted from the
anticipatory to the causal part. This pattern confirms that energy prices constitute the
primary transmission channel, while second-round effects gradually spread to non-energy
components over time. The producer price index (PPI) begins to respond in the leads,
with an impact effect of around 0.5 percent, but quickly becomes statistically insignificant,
signaling modest cost pressures in the production sector. As for inflation expectations
(Inf _Exp), they exhibit a highly significant anticipatory response, rising on impact but re-
maining relatively short-lived. This pattern suggests that agents revise their expectations
in the expected direction, while monetary policy credibility and the perceived transitory

nature of the disturbance prevent a persistent de-anchoring of inflation expectations.

Macroeconomic uncertainty increases significantly already at its leads, reflecting the
anticipatory component of the shock, and peaks on impact at about 0.02 percentage points
before gradually declining thereafter. US industrial production (IP) declines after a short
delay, mirroring the global real activity response and indicating that the real side of the
economy adjusts sluggishly to the cumulative drag from higher energy costs and weaker
demand. The unemployment rate (UN) increases by about 0.3 percentage points on im-
pact and then gradually declines. The responses of price and activity variables suggest
that anticipated oil supply shortfalls can simultaneously trigger inflationary and recession-
ary effects, producing a negative co-movement between CPI and real activity, consistent
with stagflation. Consequently, this shock presents significant challenges for monetary

policymakers, given the negative trade-off between inflation and economic activity.

Business confidence (BSCI) declines significantly by about —1 percent on impact, be-
ginning to recover and returning to its initial level after roughly twenty months. The

10-year government bond yield (GB__10Y) rises persistently, though not significantly, in-
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dicating that term premia and expected future short rates respond to the inflationary
component of the shock despite the anticipated drag on economic activity. Consistent
with the MSCI index, the S&P 500 exhibits a similarly negligible response to anticipated
oil supply shocks, reinforcing the finding that equity markets remain unaffected by such
supply news. Finally, the real effective exchange rate (REER) shows no statistically sig-
nificant dollar appreciation, whereas, as a net oil importer, the United States would be
expected to experience a currency depreciation following a supply shock that raises oil
prices. This effect may be muted by the fact that oil is predominantly traded in U.S.
dollars, as well as by the United States’ transition between net oil exporter and net oil

importer during the sample period.

In summary, these results suggest that news about future oil supply shortfalls can
simultaneously generate inflationary and recessionary effects, while having only a limited

impact on financial markets.

6 Two worlds of oil: Anticipation across OPEC and

non-OPEC productions

While the global oil production delivers a clear supply-news shock, it remains silent on
the underlying sources of this information. To shed light on the origin of the identified

news, we reapply the same identification strategy to disaggregated production measures.

The distinction between OPEC and non-OPEC oil production is well grounded both
institutionally and empirically. OPEC producers operate under a coordinated framework
that explicitly targets supply management through production quotas and strategic ad-
justments, whereas non-OPEC producers are largely driven by market-based incentives

and technological constraints, leading to fundamentally different supply responses.'”

A growing body of empirical work documents these structural differences and their im-

plications for oil market dynamics. Extending the framework of Pierru et al. (2018, 2020),

7see, e.g., the discussion provided by the U.S. Energy Information Administration:

https://www.eia.gov/finance/markets/crudeoil /supply-opec.php

33



Almutairi et al. (2023) show that coordinated supply management by OPEC+ reduced
oil price volatility by up to 50 percent, both before and during the COVID-19 pandemic.
Importantly, they attribute most of this stabilization effect to OPEC’s own actions, while
the role of the Allies was primarily to support the price level rather than to dampen
volatility. More recently, Baumeister and Hamilton (2024) emphasize the importance of
accounting for heterogeneous supply and demand behavior when identifying oil market
shocks. They show that fluctuations in Saudi Arabian oil production, together with en-
dogenous inventory adjustments, have historically played a central role in stabilizing the

global price of oil.

Taken together, these findings suggest that changes in OPEC production embed a
substantial anticipatory component, reflecting coordinated and credible commitments to
future supply management. Exploiting the differential behavior between OPEC and non-
OPEC production therefore provides a natural and informative strategy for identifying oil
supply news shocks, as anticipated supply developments are more likely to be transmitted
through OPEC production decisions than through the largely market-driven responses of

non-OPEC producers.

Figure 7 juxtaposes the responses from NC-VARs where the news shock is identified
either from OPEC production or from non-OPEC production, and the contrast is highly
revealing about the nature of each disturbance. Under OPEC-based identification, global
oil production and real activity both fall gradually and persistently, while real prices and
inventories rise, closely mirroring the baseline news shock and matching the narrative
that coordinated OPEC decisions about future quotas drive expectations of lower future
supply. Under the non-OPEC-based identification, oil production and global economic
activity also decline, but the magnitude of these responses is substantially smaller. The
key difference lies in the behavior of the real oil price and global oil inventories: the
real oil price responds significantly, but in the opposite direction compared to OPEC
shocks, falling rather than rising and global oil inventories respond positively, but the
effect is statistically insignificant. This suggests that the market does not view non-OPEC

supply news as a primary driver of long-run scarcity; instead, non-OPEC expansions
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Figure 7: Impulse-response functions to the OPEC and Non-OPEC oil news shock
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using Non-OPEC production. Shaded areas and dashed/dotted lines indicate 90% and 68% credible sets.
Impulse responses are shown over negative and positive horizons due to the noncausal NC-VAR, with negative
values reflecting lead terms of the MA representation.

often offset OPEC restrictions or respond to demand booms. Consequently, these shocks
appear less consistent with a pure supply-side news shock and instead resemble a mixed,
or potentially demand-dominated, disturbance. This pattern suggests that non-OPEC
production responds largely endogenously to broader macroeconomic conditions rather

than reflecting an exogenous supply-driven news shock.

In summary, the two specifications suggest that the Max-Share procedure captures
different underlying fundamentals. For OPEC production, it isolates expectation shocks
related to cartel behavior. For non-OPEC production, however, it tends to combine
demand-related movements with capacity adjustments. Consequently, the global oil sup-
ply news shock is primarily an OPEC-driven phenomenon, whereas non-OPEC production

conveys more information about cyclical demand than about exogenous supply shocks.

Figure 8 compares the historical contributions of OPEC- and non-OPEC-based news
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shocks to real oil price fluctuations. A salient feature of the figure is that the contribution
of non-OPEC news shocks is most often opposite in sign to that of OPEC news shocks.
This divergence underscores their distinct economic meanings. OPEC-based news shocks
account for large and persistent movements in real oil prices, particularly during episodes
associated with changes in cartel coordination or anticipated supply restrictions, consis-
tent with forward-looking supply news. In contrast, on-OPEC-based news shocks tend to
offset these movements, exhibit smaller and less persistent contributions, and are more
closely aligned with cyclical downturns and price declines, indicating demand-like effects

rather than exogenous supply news.

Moreover, the episode surrounding the COVID-19 pandemic provides additional sup-
port for this interpretation. During this period, the collapse in oil prices is almost entirely
driven by demand conditions, and the contribution of non-OPEC-based news shocks is
both negative and significant. This finding offers further evidence that non-OPEC news
shocks have demand-like effects and are consistent with demand-driven interpretations,
rather than reflecting exogenous supply news.

Figure 8: Contribution of OPEC an Non-OPEC oil news shocks to oil price fluctuations
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Notes: The solid blue line shows the median contribution of the oil supply news shock identified from OPEC oil
production, while the solid red line shows the contribution identified from Non-OPEC oil production. Light blue
and light red shaded areas indicate the 90% credible sets for OPEC and Non-OPEC shocks, respectively.

Figure 9 revisits the global macroeconomic indicators for an OPEC-based news shock

and shows that the global macro-financial responses are very similar to those obtained for
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the baseline shock. This finding is consistent with OPEC being the dominant source of
global oil supply news. GECON and OECD passenger car registrations both respond with
sizeable and persistent declines, mirroring the baseline, which shows that OPEC-related
news is sufficient to generate global demand weakness in energy-intensive sectors. The
global supply chain pressures (GSCPI) also decline in line with the benchmark model.
OECD inflation rises more significantly than in the benchmark model, indicating that once
the shock is filtered from the non-OPEC component, the effect on prices becomes more
pronounced. Geopolitical risk, jumping immediately, reveals that markets view OPEC
supply news as both a source and a symptom of heightened geopolitical fragility. Finally,
the global stock index MSCI declines but not significantly, suggesting that although OPEC
shocks constitute important global risk events, their financial impact is not persistent

when viewed from a broad global portfolio perspective.

Figure 9: Reactions of global macroeconomic variables to a OPEC news shock
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MA representation.

The close similarity between Figures 5 and 9 strengthens the argument that the base-
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line news shock identified from aggregate production is effectively an OPEC-driven ex-

pectations shock at the global level.

In contrast, Figure 10 highlights the markedly different dynamic responses associated
with news shocks identified using non-OPEC production. In this case, global macroeco-
nomic reactions tend to be weaker and, in some instances, exhibit sign reversals. GECON
and car registrations show smaller and sometimes even positive initial responses, suggest-
ing that the identified shock may be picking up episodes where non-OPEC expansions
accompany strong global demand rather than exogenous supply tightening. Geopolitical
risk reacts only modestly, if at all, underscoring that markets do not interpret non-OPEC
production surprises as major geopolitical events. Finally the global stock index response
is mild and not significant, which is again consistent with a disturbance that is less tightly

linked to perceived long-run scarcity.

Figure 10: Reactions of global macroeconomic variables to a NON-OPEC news shock
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Notes: The solid lines are the posterior median cumulated impulse responses of global macroeconomics variables.
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the impulse responses are located on both sides of zero. The negative side corresponds to the lead terms of the
MA representation.

Figure 11 reproduces the U.S. macro-financial responses to an OPEC-based news shock
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and confirms the stagflationary pattern documented in Figure 6, and clarifies that the US

stagflation response is especially pronounced when the news shock is explicitly tied to
OPEC.

Figure 11: Reactions of US macroeconomic variables to a OPEC supply news shock
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Notes: The solid lines are the posterior median cumulated impulse responses of US macroeconomics variables. Blue
and grey shaded areas are the 90 and 68 % credible sets of the NC-VAR(12,12). Because of noncausality, the impulse
responses are located on both sides of zero. The negative side corresponds to the lead terms of the MA representation.
Headline and energy CPI, producer prices, and inflation expectations all rise follow-
ing the shock, with headline and energy prices exhibiting particularly strong responses.
This pattern is consistent with an environment in which OPEC-based news is rapidly
transmitted to energy-intensive sectors, feeding directly into cost pressures and inflation
expectations. In line with the results of the benchmark model, macroeconomic uncer-
tainty increases and real economic activity deteriorates. Industrial production falls and
unemployment rises, with lags and magnitudes that are comparable to those observed in
the baseline specification. At the same time, business confidence index falls sharply on
impact, underscoring the central role of expectations and sentiment as key amplification
channels for OPEC-related news shocks. Financial markets respond in a manner con-

sistent with heightened inflationary concerns. The 10-year government bond yield rises
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more strongly than in the baseline, while equity prices and the real effective exchange

rate exhibit more muted reactions.

Finally, Figure 12 shows that US responses to non-OPEC-based news shocks are
weaker, sometimes opposite, and generally less coherent with a stagflation narrative. This

supports the view that such shocks are closer to demand shocks.

Figure 12: Reactions of US macroeconomic variables to a Non-OPEC news shock
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responses are located on both sides of zero. The negative side corresponds to the lead terms of the MA representation.

Consistent with the decline in the real oil price, price measures fall following the
shock. Energy prices, in particular, contract sharply, suggesting that market participants
do not interpret the disturbance as signaling a significant or persistent future supply con-
straint. The modest increase in macroeconomic uncertainty, alongside the slight declines in
industrial production and limited rise in unemployment, further suggests that the macroe-
conomic impact of the shock is relatively contained. Confidence indices show only modest
declines or even temporary improvements, while equity prices, long-term yields, and the
real effective exchange rate exhibit limited movements, pointing to a milder financial

transmission.
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Overall, these results confirm that non-OPEC-based “news” shocks do not present the
same macro-financial policy challenges as OPEC-driven news: they tend to be deflation-

ary, less contractionary, and considerably less disruptive for the US economy.
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7 Conclusion

This paper develops a unified framework to recover oil supply news shocks in an envi-
ronment where expectations, not just fundamentals, drive market dynamics. By pair-
ing a noncausal structural VAR with a Max-Share identification, we resolve the tension
between non-fundamentalness and recoverability that constrains standard proxy SVAR
approaches. The evidence reveals a global oil market that is forward looking and expec-
tation driven: price and inventory movements anticipate production adjustments, while

the real economy absorbs their delayed but powerful effects.

Beyond the oil market, our findings speak to a broader theme in macroeconomics, the
centrality of beliefs in shaping real outcomes. Anticipation can be as powerful as real-
ization, and when expectations are shared collectively, the future becomes a fundamental
element of its own. Moving forward, extending this noncausal identification approach to
other domains-such as fiscal foresight, climate policy, or geopolitical risk-offers a promising
avenue to better understand how information, expectations, and time interact in driving

global cycles.
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A Equivalence with alternative NC-VAR specifica-

tions

The multiplicative VMAR(r, s) representation in (23), following Lanne and Saikkonen
(2013), admits an alternative specification as a VAR(ny, ng,p) process in the sense of
Davis and Song (2020) and Gourieroux and Jasiak (2017). The latter representation

writes the n-dimensional process y; as:
Y = O1Y—1 + Oyp—o + - + Opyr_p + Uy

where the characteristic polynomial det(f,, — ©12 — --- — ©,2P) = 0 has n; roots outside
and ny roots inside the unit circle, with n; 4+ ny = n x p. Following Giancaterini (2023),
Chapter 4, the equivalence between these two specifications requires that the highest-order
lead coefficient matrix in the noncausal polynomial has full rank. We now verify that this
condition fails in our VMAR(1,2) specification. The noncausal polynomial ®(L~!) =

I, — &, L' — &, L2 has coefficient matrices:

0 0 0 0
Q)l: 5 2 = 5
50 fpﬁ 0

Computing the determinant of the highest-order coefficient yields:

d t(‘I) ) det 0 0 O0x0-0 52 0 (38)
€ = de = X — X —
2 1625 0 1—ppB
—p

Hence rank(®;) = 1 < 2 = n, confirming that the full-rank condition is violated. This
rank deficiency implies that the process (q;, p;)’ does not admit a VAR(ny, ng, p) repre-
sentation with i.i.d. errors in the sense of Davis and Song (2020) and Gourieroux and
Jasiak (2017). To see this explicitly, consider the companion form of the noncausal com-

ponent. Defining Z; = (y;,¥;,,)" and rewriting the noncausal part as Z, = YZ;1 + v,
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the companion matrix takes the form:

00 0 0
o, P 30 -2 0

= 7= 1B (39)
I, 0 0 0 0
01 0 0

The matrix T is singular precisely because ®, is rank-deficient. Consequently, the eigen-
value decomposition required for the Gourieroux and Jasiak (2017) representation theorem
cannot be directly applied to obtain a standard VAR(ny, ng, p) with i.i.d. innovations. This
rank deficiency does not compromise the validity of our approach. The VMAR(r, s) mul-
tiplicative structure of Lanne and Saikkonen (2013) remains well-defined and estimable,
as both TI(L) and ®(L~!) satisfy the stability conditions det IT(z) # 0 and det ®(z) # 0

for 2| < 1.

B Noncausal representation and recoverability in the

general news model

This appendix extends the stylized model of Section 2 to a general specification of the oil
production process, following Nelimarkka (2017a). We derive the NC-VAR(1,[) represen-
tation and prove recoverability of the oil supply news shock in the sense of Chahrour and

Jurado (2021).

B.1 General oil production process with news

Consider the general oil production process:

Gt = Pqi—1 + X€ + € (40)
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where |p| < 1, 1 > 1 denotes the anticipation horizon, and x € [0, 1) captures the contem-
poraneous impact of the news shock on oil production. The case x = 0 corresponds to a
pure news shock with no immediate effect on production. The oil price p; (or any forward-
looking variable, including inventories, except for capacity constraints) is determined by

the forward-looking equilibrium condition:

pr = BEi[pea] + q: + v (41)

where || < 1 and 14 is an exogenous price disturbance orthogonal to the news shock.

The forward-looking solution of equation (41) is:

Dt = Z BB qs) + (42)
=0

From equation (40), iterating forward yields for j > 1:

j—1
Qi = P+ Z P (€ €t14it) (43)
=0

Taking conditional expectations with E[e; ] = €44 for & < 0 and E;[e;4x] = 0 for

k> 0:

' min(j—1,1—-1) 4 4
Eilgs] = Pa+ D, ¢ Tasipion j2>1 (44)
i=0

Substituting k =1 — 1 — ¢ (so that €411 = €_k):

-1

Eilqis] = P + > P ey, j>1 (45)
k=max({—j5,0)

Proposition 2. Under |p| < 1, |B| < 1, and x € [0,1), the equilibrium price is:

l

Pe=0pq1+ Y ek +u (46)
k=0
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where 0 = (1 — pB)~! and the coefficients are:

7 = 0(x + ') (47)
=08 1<k<i-1 (48)
V=10 (49)

Proof. Substituting (45) into (42) and collecting terms in ¢;:

1
1—pp

1+ i(,oﬁ)j = =0 (50)

so that 0q; = Opq;_1 + Oxe; + Oe,_;. For the anticipation terms, each €, with k €

{0,...,1 — 1} receives contributions from horizons j > [ — k:
00 -k
g =itk _ (B) okl — gglk 51
j;kﬁ p 5" B (51)

Combining all contributions: €, receives #x from fundamentals and #3' from anticipation,
yielding vo = 0(x + ('); intermediate shocks €;_j for 1 < k < [ — 1 receive only antici-
pation terms v, = 04'%; and ¢,_;, being already realized, receives only v, = # from the

fundamental component. O

Specializing to a two-period anticipation horizon (I = 2), we obtain vy = 0(x + 3?),

v1 = 05, and 75 = #. The equilibrium price becomes:

pe=0pg—1 +0(x + 52)@ +00¢;_1 + Oe;_o + 1y (52)

We now examine the invertibility properties of this reduced-form representation. The

structural moving average representation of v, = (g, p¢)’ is:

p 0 €t
Yy = yi—1 + B(L) (53)
Hp 0 Vg
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where the MA polynomial B(L) has the triangular form:

x+ L' 0
B(L) = (54)
bor1(L) 1

with byt (L) = 5o + 52y wL? + L'

Lemma 1. The MA representation (53) is non-fundamental if and only if x < 1. The
determinant polynomial is:

det B(z) = x + 2! (55)

which has 1 roots:

zp = e =01, =1 (56)
all with modulus |z,| = x'/' < 1 when x < 1.

Proof. From the triangular structure of B(z):

det B(z) = (x +2)-1=x+ 2 (57)

Setting det B(z) = 0 yields z! = —y = xe'™. The | complex roots are:

o = Y Mm@V 01 -1 (58)

Each root has modulus |z;| = x'/". For x < 1, we have |z;| < 1, so all [ roots lie strictly

inside the unit circle, rendering the MA polynomial non-invertible. O]

The [ roots are uniformly distributed on a circle of radius x'/' centered at the origin,
with angular separation 27 /l. For [ = 2: zp; = 4i,/X. For [ = 3: three roots at angles
7/3, 7, and 5m/3.

To address this non-fundamentalness, we reformulate the model in its noncausal VAR

representation. From equation (40):

(1—pL)g = (x + LYe, (59)
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Rewriting the right-hand side using lead operators:

(x+ e, = L'(xL™' + e = (1 + xL Hery (60)

Lemma 2. For x < 1, the polynomial 1+ xz' has all roots outside the unit circle, hence

(1 + xL7Y) is invertible on the unit circle.

Proof. The roots of 1+ xz! = 0 are z, = x~/!e™+V/1 with modulus |z = x V! > 1

for y < 1. O]
Therefore:

(1= pL) A+ XL g = €y (61)

Expanding (1 + xL™")™' = $320(—x)?L™Y, the price equation can be rewritten in

terms of future values of ¢;.

Proposition 3. Under |p| < 1, |B] < 1, and 0 < x < 1, the system (40)—(41) admits a

noncausal VAR(1,1) representation:

I(L)®(L™")ye = Bous (62)

where y;, = (Qtapt)/; Uy = (Et—l; Vt)/, and

0
ML) =T —TL, 1= (63)
Op 0
s ‘ din 0
SL Y=L oL, &=|"" (64)
=1 ¢joan 0
10
By = (65)
11

The lead polynomial coefficients depend on x as follows:

(i) If x = 0 (pure news shock), then ¢;11 =0 for all j > 1, and the truncation order is
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s =1.

(i1) If x € (0,1) (mized shock), the expansion (1 + xL=Y)~™t = 322 (—x)FL=* implies

that non-zero entries in ¢;11 occur only at multiples of I:

¢kl,11 = _(_X)ka k= 17 25 3a s (66)

In practice, truncating at order s > | provides an accurate approrimation.

(1ii) Forl =2 with x € (0,1), the coefficients satisfy:

0 J odd
Pj11 = (67)

—(=x)'* j even

B(—x) - 1/2 j odd
bim = (68)
6(x + B2)(—x)/* j even

The impulse response matrices W; solve the recursion:

Uy = Linoll] + 3 00 (69)
k=1

with boundary condition V; =0 for j < —s.

We now assess whether the news shock can be recovered from observables using the

recoverability criterion of Chahrour and Jurado (2021).

B.2 Recoverability in the sense of Chahrour and Jurado (2021)

We now establish the main theoretical result: the oil supply news shock is recoverable

from the observables.

Definition 1. From Chahrour and Jurado (2021): let {y:} be obtained from structural
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shocks {u:} by a linear transformation with spectral characteristic o(\):
vo= [ (N (70)
The shocks are recoverable from {y.} if and only if:
rank[p(N\)] = n,  for almost all X\ € [—7, 7] (71)

Proposition 4. Consider the NC-VAR(1,1) representation (62) under:

(A1) |p| < 1 (stationarity of oil production)
(A2) |B| < 1 (convergence of forward-looking solution)
(A3) 0 < x <1 (news shock dominates contemporaneous effect)

(A4) 1 > 1 (anticipation horizon)

Then the structural shocks (€;, 1) are recoverable from the observables (q;, py)" in the sense

of Chahrour and Jurado (2021).

Proof. The NC-VAR(1,[) representation (62) implies the two-sided MA form
gy = @(L~)I(L) " Bow

, with spectral characteristic p(A\) = ®(e*) (=) "1 By. We establish that det[p()\)] #
0 for all A € [—m, 7] by examining each factor. The causal polynomial I1(z) = I, — II; 2
has determinant det[II(z)] = 1 — pz, with unique root z = 1/p. Under Assumption (Al),
lp| < 1 implies |1/p| > 1, hence det[Il(e=*)] = 1 — pe~™ # 0 for all \. The noncausal
polynomial ®(z) = I, — >5_, ®;2/ inherits its lower-triangular structure from the ®;
matrices, so det[®(z)] = (1 —3; ¢;1127) - 1. When x = 0, all ¢;1; = 0 and det[®(2)] = 1.

When y € (0,1), the convergence of the geometric series in y ensures det[®(e*)] # 0 for
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all X\. Since det[By] = 1, we conclude that

det[Bg]

det[p(N)] = det[®(e™)] det[[I(e—)]

#0 VXe[-m ] (72)
Thus rank[p(\)] = 2 = n, for all A\, which satisfies the Chahrour and Jurado (2021)
recoverability condition. O]

Corollary 1. Under the conditions of Proposition 4, the structural shocks can be explicitly
recovered as:

uy = By 'TI(L)®(L )y, (73)

which is a linear combination of a finite number of leads and lags of the observables:

€1 1 0 !
= (yt — Iy — Z CI)jyt-&-j) (74)
Jj=1

Vg -1 1
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C Data

Table 1: Variables used, sources

and transformations

Variables Code Period Data source Transformation
Global Oil Market Variables

World oil production Wop 1974:01-2025:07  US EIA’s Monthly Energy Review First log difference
World industrial production WIP 1974:01-2025:07 Christiane Baumeister website First log difference
Refiner acquisition cost RAC 1974:01-2025:07 US EIA’s Monthly Energy Review Level

World oil stocks® Stocks 1974:01-2025:07 US EIA’s Monthly Energy Review First difference
Global economic variable

Global Economic Conditions indicators GECON 1974:01-2025:07 Christiane Baumeister website Level

Geopolitical Risk Index GPR 1974:01-2025:07  Caldara et al. (2019) Level

OECD Inflation Infl_ OECD 1974:01-2025:02 OECD database Level

OECD passenger car registrations PCR_OECD 1974:01-2019:1  OECD database Level

World stock price index MSCI 1974:01-2025:07 Datastream First log difference
US macroeconomic variables

Consumer price index for all urban consumers and CPI 1974:01-2025:07 FRED Database First log difference
all items

Consumer price index for all urban consumers: En- CPIENG 1974:01-2025:07 FRED Database First log difference
ergy in U.S. City Average

Consumer price index excluding food and energy ~ Core CPI 1974:01-2025:07 FRED Database First log difference
Producer Price Index PPIACO 1974:01-2025:07 FRED Database First log difference
US Industrial production INDPROD 1974:01-2025:07 FRED Database First log difference
US Unemployment rate UNRATE 1974:01-2025:07 FRED Database Level

University of Michigan: Inflation Expectation INF_EXP 1978:01-2025:07 Michigan Survey Level

Business Tendency Surveys for Manufacturing BSCI 1974:01-2025:07 FRED Database Level

1-Year Ahead Macroeconomic Uncertainty® Macro_uncertainty 1974:01-2025:07 FRED Database Level

Long-term interest rate 10Y GB 1974:01-2025:07 FRED Database Level

Stock price index SP500 1974:01-2025:07  Bloomberg First log difference
Real effective exchange rate REER 1974:01-2025:07 FRED Database First log difference

* Following Kilian and Murphy (2014)’s method, the world oil stock variable is constructed by rescaling U.S. crude oil inventories with the OECD-to-U.S. petroleum stocks ratio. All

variables are from the EIA database and the series is seasonally adjusted.

b Macroeconomic uncertainty is proxied by 12-month ahead macro uncertainty measure of Jurado et al. (2015), drawn from large number of U.S. macroeconomic time series.

D Bayesian estimation of the noncausal VAR

This appendix provides a detailed description of the Bayesian estimation procedure for
the NC-VAR(r,s) model, following Lanne and Luoto (2016) and Nelimarkka (2017a).
We derive the Gibbs sampler algorithm that exploits the conditional normality of the

likelihood function under the multivariate ¢-distribution assumption.
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D.1 Model setup and notation

Consider the NC-VAR(r,s) model from equation (24):
I(L)D(L™ )y = &

where II(L) = I,, — I, L — --- — I, L" is the causal polynomial, ®(L~') = 1I, — &, L' —
--+ — ®,L7*% is the noncausal polynomial, and ¢, follows a multivariate t-distribution as

specified in equation (27):

€ = wt_l/Qntv Ty ~ N(Oa 2)7 )\wt ~ X?\

1/2

where w, '° is a scalar volatility factor and A\ denotes the degrees-of-freedom parameter.

Let II and ® be matrices stacking II; for ¢ = 1,...,r and ®, for ¢ = 1,...,s, re-
spectively. Define 7 = vec(Il), ¢ = vec(®), and denote the full parameter vector as
0 = (7', ¢/, vech(X)', \)'. For convenience, we also define ¢ = (7', ¢’)’. To impose s* zero
restrictions on matrix ®, we introduce an ((n%s — s*) x 1) vector ¢, containing the unre-
stricted parameters of ® and an (n?s x (n?s—s*)) deterministic selection matrix R, which
maps the unrestricted parameters to the full vector as ¢ = R,¢,. When no restrictions

are imposed, Ry = I,25 and ¢, = ¢.

D.2 Conditional likelihood

Define the auxiliary variables:

Ut(¢) =Y — P11 — - — Pyl

and the transformed error term:

& (0) = u(6) — i:lnjvt_jw)
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The approximate conditional joint density of y = (y1,...,yr) given w = (wWyi1, ..., Wr—s)
is:

’w 9 H p 6t ‘wta )

t=r+1

where

n/2
wt/

o 1 IN—1
p(Et‘Wt, z) = W exp (—2wtet(19) by Et(ﬁ))

D.3 Prior distributions

We specify the following prior distributions:

7~ Nz, Vy) - 1(7)
gbr ~ N(@w V‘f?v-) ' 1(¢)7 ¢ = R¢¢r
X ~IW(S,v)

A ~ Exp(})

where 1(-) is an indicator function equal to 1 when the polynomial to which 7 or ¢
is mapped has all roots outside the unit circle, and ZW denotes the inverse Wishart
distribution. We impose a Minnesota-Litterman type prior on the dynamic coefficients.
The prior means are set to zero: m =0 and ¢ = 0. The prior covariance matrices V; and

Vg, are diagonal with elements:

N N T —1 =1
Oriil = I3 ) Or,ijl = 72 [s P v,] =1, -y 1, - 5 T
s O']
M,6 M6 i
O il = s O¢,ijl = 72 s gv 1,) = 17 -, 1, [ = 17 S

J

where &; is the residual standard error from a univariate autoregression with r lags on the
ith variable, v and 7, 4 control for overall tightness, v, controls for relative tightness

across equations, and 3 is a decay parameter for more distant lags and leads.

In our baseline estimation, we set 71, = 0.2, v14 = 0.15, 72, = 0.5, 124 = 0.3,

73« = 1.3 and 34 = 1. The tighter prior on lead coefficients (y1,4 < 71 .~) shrinks them
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more heavily towards zero, reflecting the prior belief that lag terms are more important in
determining the dynamics. This asymmetric shrinkage is crucial for achieving unimodality
of the posterior distribution. For the remaining hyperparameters, we set S = (v —n —

1)diag(6%,...,62%) withy =n+2, and A = 8.

D.4 Gibbs sampler algorithm

The Gibbs sampler iterates through the following steps. Define the matrices Y and U

/2[

by stacking v = wtl/2vt(¢)’ and U = w; Vi—1(@) - - v (¢)'), respectively, for t =

r+1,...,7 —s. Similarly, define Y* and X* by stacking y; = wtl/QH(L)yt and X/ =
th/QH(L)Xta where Xy = I, @ [yj 1+ Yisd]-

Step 1: Draw ¢,. The full conditional posterior distribution of ¢, is:

¢r|y77rv va ~ N(Qgr"zﬁr) ) 1(¢)7 ¢ - R¢¢r

where

V,' =V, '+ R, X"QX"*R,

or =V, (Vo '0, + RLXTQY™)

and Q = Ip_,_, @Y7L

Step 2: Draw 7. The conditional distribution of 7 is:
mly, &, 5w ~ N(7, Vz) - 1(m)
where

Vi=vilesleUU

="V, (Vﬂ_lﬂ + Vec(U/YE_l))
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Step 3: Draw Y. Defining S = S+ E'E where E=Y —Ull,and v =v+T —s—r,

the conditional posterior distribution for X is:
Sy, 7, ¢, w ~ IW(S, )
Step 4: Draw w. The volatility parameters are drawn from:
()\ + et(ﬁ)'Z_let(ﬁ)) wWily, T 0, S A ~ X3y, t=71+1,...,T—s

Step 5: Draw A. The degrees-of-freedom parameter is drawn using a Metropolis-

within-Gibbs step from the kernel:

Py w) o (2221 (a/2)) T T ( T w2/ >exp l—( +35 Ly wt> ]

t=r+1 t r+1

We use a univariate normal distribution with mean equal to the mode and variance equal
to the inverse of the second derivative of the log-kernel as the proposal distribution. The

standard Metropolis-Hastings acceptance probability is then computed.

D.5 Posterior inference

In our empirical application, results are based on 10,000 posterior draws obtained after
a burn-in period of 50,000 draws. For each retained draw (7™, (™) £ \()) 4y =
1,...,10000, we compute the two-sided MA coefficients {\Ifglm)}hH:_s from equation (25),
perform the Max-Share identification to obtain W™ and compute the structural impulse
responses @( m = \If(m AT (m) - The reported point estimates are posterior medians,
and the credible sets are constructed from the relevant quantiles across draws. The low
posterior mean of the degrees-of-freedom parameter A\ (typically below 5, as shown in
Figure 1) provides strong evidence for fat tails in the error distribution, confirming the
appropriateness of the multivariate ¢-distribution assumption and the identification of a

unique NC-VAR specification.
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E Rob

ustness Check

E.1 Moving restrictions on real economic activity

Figure 13:

E.2 Tim

Figure 14: Impulse response functions to oil news shocks across different sub-samples.
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The figure displays posterior median impulse responses and associated 68 % and 90 % credible
sets. Solid lines and shaded areas correspond to the earlier period, while dashed and dotted
lines represent the later period. Owing to noncausality, impulse responses are defined on both
sides of zero, with negative horizons capturing the lead terms of the NC-VAR moving-average

representation.

e backtest
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The figure displays posterior median impulse responses and associated 68 % and 90 % credible
sets for the 1974-1989 and 1990-2025 samples. Black solid lines and shaded areas correspond
to the earlier period, while red dashed and dotted lines represent the later period. Owing
to noncausality, impulse responses are defined on both sides of zero, with negative horizons
capturing the lead terms of the NC-VAR moving-average representation.
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