
Forecasting extreme trajectories using semi-norm
representations

Gilles de Truchis∗, Sébastien Fries†, Arthur Thomas‡

PRELIMINARY DRAFT - PLEASE DO NOT CIRCULATE

October 10, 2024

Abstract

For (Xt) a two-sided α-stable moving average, this paper studies the conditional distribution of

future paths given a piece of observed trajectory when the process is far from its central values.

Under this framework, vectors of the form Xt = (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h), m ≥ 0, h ≥ 1,

are multivariate α-stable and the dependence between the past and future components is encoded

in their spectral measures. A new representation of stable random vectors on unit cylinders sets

{s ∈ Rm+h+1 : ∥s∥ = 1} for ∥·∥ an adequate semi-norm is proposed to describe the tail behaviour

of vectors Xt when only the first m+ 1 components are assumed to be observed and large in norm.

Not all stable vectors admit such a representation and (Xt) will have to be “anticipative enough”

for Xt to admit one. The conditional distribution of future paths can then be explicitly derived

using the regularly varying tails property of stable vectors and has a natural interpretation in terms

of pattern identification. Through Monte Carlo simulations we develop procedures to forecast crash

probabilities and crash dates and demonstrate their finite sample performances. As an empirical

illustration, we estimate probabilities and reversal dates of El Niño and La Niña occurrences.
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1 Introduction

Stochastic processes depending on the “future” values of an independent and identically

distributed (i.i.d.) sequence, often referred to as anticipative, have witnessed a recent surge

of attention from the statistical and econometric literature. This gain of interest is driven

in particular by their convenience for modelling exotic patterns in time series, such as

explosive bubbles in financial prices (Cavaliere et al., 2017; Cubadda et al., 2019; Fries

and Zakoian, 2019; Fries, 2021; Gourieroux et al., 2020; Gouriéroux and Zakoian, 2017;

Hecq et al., 2016, 2017a,b, 2020; Hecq and Voisin, 2021; Hencic and Gouriéroux, 2015).1

The attractive flexibility of anticipative processes cannot yet be fully leveraged, however,

as their dynamics, and especially the conditional distribution of future paths given the

observed past trajectory, remain largely mysterious. A remarkable exception is that of

the anticipative α-stable AR(1) for which partial results were obtained in Gouriéroux and

Zakoian (2017) and further completed in Fries (2021). Even in this simplest case within the

family of anticipative processes, however, future realisations feature a complex dependence

on the observed past, which is reflected in the functional forms of the conditional moments

obtained in Fries (2021). Interestingly, the dynamics of the anticipative stable AR(1)

simplifies during extreme events where it appears to follow an explosive exponential path

with a determined killing probability. This naturally raises the question of whether and

under which form such behaviour could be found in more general stable processes.

For Xt =
∑

k∈Z dkεt+k a two-sided moving average with (εt) an i.i.d. α-stable se-

quence and (dk) a non-random coefficients sequence, this paper analyses the conditional

distribution of future paths given the observed trajectory, say (Xt+1, . . . , Xt+h) given

(Xt−m, . . . , Xt), m ≥ 0, h ≥ 1, when the process is far from its central values. Only

mild summability conditions are assumed on the sequence (dk) and, in particular, we do
1see also Andrews et al. (2009); Behme (2011); Behme et al. (2011); Chen et al. (2017); Gouriéroux and

Jasiak (2016, 2017); Lanne and Saikkonen (2011, 2013); Saikkonen and Sandberg (2016)
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not presume anything upfront on the anticipativeness or non-anticipativeness of (Xt).
2

Under this framework, any vector of the form Xt = (Xt−m, . . . , Xt+h) is multivariate α-

stable and its distribution is characterised by a unique finite measure Γ on the Euclidean

unit sphere Sm+h+1 = {s ∈ Rm+h+1 : ∥s∥e = 1}, where ∥ · ∥e denotes the Euclidean

norm (Theorem 2.3.1 in Samorodnitsky and Taqqu (1994)). The measure Γ in particular

completely describes the conditional distribution of the normalised paths Xt/∥Xt∥e, the

“shape” of the trajectory, when Xt is large according to the Euclidean norm and given some

information about the observed first m+ 1 components. A straightforward application of

Theorem 4.4.8 by Samorodnitsky and Taqqu (1994) indeed shows that

P
(
Xt/∥Xt∥e ∈ A

∣∣∣ ∥Xt∥e > x and Xt/∥Xt∥e ∈ B
)

−→
x−→∞

Γ(A ∩B)
Γ(B) , (1.1)

for any appropriately chosen Borel sets A,B ⊂ Sm+h+1. As such however, (1.1) is of little

value for prediction purposes where only Xt−m, . . . , Xt are assumed to be observed, given

that the conditioning generally depends on the future realisations Xt+1, . . . , Xt+h, mainly

through the Euclidean norm of Xt. The idea developed here is to obtain a version of (1.1)

where the Euclidean norm is replaced by a semi-norm ∥ · ∥ satisfying

∥(x−m, . . . , x0, x1, . . . , xh)∥ = ∥(x−m, . . . , x0, 0, . . . , 0)∥, (1.2)

for any (x−m, . . . , xh) ∈ Rm+h+1. In this view, a new representation of stable random

vectors on the “unit cylinder” C
∥·∥
m+h+1 := {s ∈ Rm+h+1 : ∥s∥ = 1} is thus explored,

where ∥ ·∥ is such a semi-norm. Contrary to representations involving norms (see Theorem

2.3.8 in Samorodnitsky and Taqqu (1994)), not all stable random vectors admit represen-

tations on unit cylinders and a characterisation is provided. It is shown that only if (Xt)

is “anticipative enough” will Xt admit a representation by a measure Γ∥·∥ on C
∥·∥
m+h+1.

The property (1.1) is then shown to hold with an adequate semi-norm and with Γ (resp.

Sm+h+1) replaced by Γ∥·∥ (resp. C∥·∥
m+h+1). The problem finally boils down to choosing the

2That is, we do not presume anything on the zeros of (dk), e.g., dk = 0 for k > 0 (purely non-anticipative

case) or k < 0 (purely anticipative case).
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appropriate Borels B in (1.1) reflecting that only the past “shape” (Xt−m, . . . , Xt)/∥Xt∥

is observed.

The use of (1.1) to infer about the future paths of (Xt) has connections with the so-

called spectral process introduced by Basrak and Segers (2009) which has opened a fruitful

line of research (see for instance Basrak et al. (2016); Dombry et al. (2017); Janßen (2019);

Janßen and Segers (2014); Meinguet and Segers (2010); Planinić and Soulier (2017)). This

spectral process is defined as the limit in distribution of a vector of observations of a

multivariate regularly varying time series conditionnally on the first observation being large.

The approach followed here differs in that it operates at the representation level of α-stable

vectors, establishing a link between the spectral representation and the tail conditional

distribution of stable linear processes and shedding light on the (un)predictability of their

extremes. A natural interpretation of path prediction in terms of pattern identification

emerges from Property (1.1) applied to stable linear processes, similar to what Janßen

(2019) pointed out in a framework close to that of Basrak and Segers (2009).

Section 2 characterises the representation of general α-stable vectors on semi-norm unit

cylinders and shows that Property (1.1) can be restated under this new representation. Fo-

cusing on α-stable moving averages Section 3 studies under which condition on the process

(Xt) the vector (Xt−m, . . . , Xt+h) admits a representation on the unit cylinder C∥·∥
m+h+1.

The anticipativeness of (Xt) surprisingly arises as a necessary condition for such a repre-

sentation to exist. Section 4 then exploits Property (1.1) to analyse the tail conditional

distribution of some particular processes: the anticipative AR(1), AR(2) and the anticipa-

tive fractionally integrated process. Section 5, provides a set of Monte-Carlo simulations

that illustrate how, in practice, this pattern identification can be used to predict very

accurately the future path. In particular, we suggest simple procedures to forecast crash

probabilities and forecast crash dates. In Section 6 we demonstrate the empirical relevance

of our theoretical results in a climate forecasting exercise. More precisely, we predict El

Niño and La Niña occurrences and their reversal date using the Southern Oscillation Index

4



(SOI) data.3 To replicate the numerical and empirical results of the paper and to illustrate

the generality of our approach, we develop a web application that allows to replicate our

results, find examples of simulated trajectories, and apply our procedures to other times

series, mainly macroeconomic, financial, and climate time series. Finally, one can upload

any type of time series that exhibits extreme explosive trajectories and use our forecasting

approach to predict the crash probability or reversal date.4 Section 7 concludes. Proofs

are collected in Section 8.

2 Stable random vectors representation on unit cylinders

This section starts by recalling the characterisation of stable random vectors on the Eu-

clidean unit sphere before exploring the case of unit cylinders relative to semi-norms and

reformulating the regularly varying tails property.

Definition 2.1 A random vector X = (X1, . . . , Xd) is said to be a stable random vector

in Rd if and only if for any positive numbers A and B there is a positive number C and a

non-random vector D ∈ Rd such that

AX(1) +BX(2) d= CX + D,

where X(1) and X(2) are independent copies of X. Moreover, if X is stable, then there

exists a constant α ∈ (0, 2] such that the above holds with C = (Aα + Bα)1/α, and X is

then called α-stable.

The Gaussian case (α = 2) is henceforth excluded. For 0 < α < 2, the vector X =

(X1, . . . , Xd) is an α-stable random vector if and only if there exists a unique pair (Γ,µ0),
3Data and methodology are available here: https://www.ncei.noaa.gov/access/monitoring/enso/soi
4The web application is under development and will be released soon
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Γ a finite measure on Sd and µ0 a non-random vector in Rd, such that,

E
[
ei⟨u,X⟩

]
= exp

{
−
∫

Sd

|⟨u, s⟩|α
(

1 − i sign(⟨u, s⟩)w(α, ⟨u, s⟩)
)

Γ(ds) + i ⟨u,µ0⟩
}
, ∀u ∈ Rd,

(2.1)

where ⟨·, ·⟩ denotes the canonical scalar product, w(α, s) = tg
(

πα
2
)
, if α ̸= 1, and w(1, s) =

− 2
π ln |s| otherwise, for s ∈ R. The pair (Γ,µ0) is called the spectral representation of

the stable vector X, Γ is its spectral measure and µ0 its shift vector. In particular, X is

symmetric if and only if µ0 = 0 and Γ(A) = Γ(−A) for any Borel set A in Sd (Theorem

2.4.3 in Samorodnitsky and Taqqu (1994)), and in that case

E
[
ei⟨u,X⟩

]
= exp

{
−
∫

Sd

|⟨u, s⟩|αΓ(ds)
}
, ∀u ∈ Rd. (2.2)

In the univariate case, (2.1) boils down to

E
[
eiuX

]
= exp

{
− σα|u|α

(
1 − iβ sign(u)w(α, u)

)
+ iuµ

}
, ∀u ∈ R,

for some σ > 0, β ∈ [−1, 1] and µ ∈ R. The representations (2.1) and (2.2) of a stable

random vector involves integration over all directions of Rd,5 here parameterised by the

unit sphere relative to the Euclidean norm. Proposition 2.3.8 in Samorodnitsky and Taqqu

(1994) shows that the unit sphere relative to any norm can be used instead, provided a

change of spectral measure and shift vector. We study alternative representations where

integration is performed over a unit cylinder relative to a semi-norm. For a given semi-

norm, not all stable vectors admit such a representation, which motivates the following

definition.

Definition 2.2 Let ∥ · ∥ be a seminorm on Rd, C∥·∥
d := {s ∈ Rd : ∥s∥ = 1} be the

corresponding unit cylinder, and let X = (X1, . . . , Xd) be an α-stable random vector.
5 By direction of Rd, it is meant the equivalence classes of the relation “≡” defined by: u ≡ v if and

only if there exists λ > 0 such that u = λv, for u, v ∈ Rd.
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(Asymmetric case) In the case where X is not symmetric, we say that X is representable

on C
∥·∥
d if there exists a non-random vector µ0

∥·∥ ∈ Rd and a Borel measure Γ∥·∥ on C
∥·∥
d

satisfying for all u ∈ Rd

∫
C

∥·∥
d

|⟨u, s⟩|αΓ∥·∥(ds) < +∞, (2.3)

if α ̸= 1, and if α = 1, ∫
C

∥·∥
d

|⟨u, s⟩|
∣∣∣ ln |⟨u, s⟩|

∣∣∣Γ∥·∥(ds) < +∞, (2.4)

such that the joint characteristic function of X can be written as in (2.1) with (Sd,Γ,µ0)

replaced by (C∥·∥
d ,Γ∥·∥,µ0

∥·∥).

(Symmetric case) In the case where X is symmetric α-stable (SαS), 0 < α < 2, we say

that X is representable on C
∥·∥
d if there exists a symmetric Borel measure Γ∥·∥ on C

∥·∥
d

satisfying (2.3) such that the joint characteristic function of X can be written as in (2.2)

with (Sd,Γ) replaced by (C∥·∥
d ,Γ∥·∥).

Remark 2.1 As unit cylinders are unbounded sets, the integrability conditions (2.3)-(2.4)

ensure the sanity of the above definition.

We start by characterising stable random vectors that are representable on a given semi-

norm unit cylinder.

Proposition 2.1 Let ∥·∥ be a seminorm on Rd and C∥·∥
d be the corresponding unit cylinder.

Denote K∥·∥ = {x ∈ Sd : ∥x∥ = 0}. Let also X be an α-stable random vector on Rd with

spectral representation (Γ,µ0) on the Euclidean unit sphere (with µ0 = 0 if X is SαS). If

α ̸= 1 or if X is S1S, then

X is representable on C
∥·∥
d ⇐⇒ Γ(K∥·∥) = 0.

If α = 1 and X is not symmetric, then

X is representable on C
∥·∥
d ⇐⇒

∫
Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞.
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Moreover, if X is representable on C
∥·∥
d , its spectral representation is then given by

(Γ∥·∥,µ0
∥·∥) where

Γ∥·∥(ds) = ∥s∥−α
e Γ ◦ T−1

∥·∥ (ds)

with T∥·∥ : Sd \K∥·∥ −→ C
∥·∥
d defined by T∥·∥(s) = s/∥s∥, and

µ0
∥·∥ =

 µ0, if α ̸= 1 or if X is S1S,

µ0 + µ̃, if α = 1 and X is not symmetric,

µ̃ = (µ̃j), and µ̃j = − 2
π

∫
Sd\K∥·∥

sj ln ∥s∥Γ(ds), j = 1, . . . , d.

Remark 2.2 The representability condition in the case α = 1 and X not symmet-

ric, is slightly stronger than that in the other cases. Indeed,
∫

K∥·∥

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) ≤∫

Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞ necessarily implies that Γ(K∥·∥) = 0 since

∣∣∣ ln ∥s∥
∣∣∣ = +∞ for

s ∈ K∥·∥.

Remark 2.3 The case d = 2 is insightful. In view of (1.1), the spectral measure of the

α-stable vector (X1, X2) describes its likelihood of being in any particular direction of

R2 when it is large in norm. As unit spheres relative to norms span all the directions

of R2, spectral measures on such spheres can describe any potential tail dependence of

(X1, X2). Unit cylinders however do not span all directions of R2 and spectral measures

thereon necessarily encode less information. Consider for instance the unit cylinder C∥·∥
2 =

{(s1, s2) ∈ R2 : |s1| = 1} associated to the semi-norm such that ∥(x1, x2)∥ = |x1| for all

(x1, x2) ∈ R2. It is easy to see that C∥·∥
2 spans all directions of R2 but the ones of (0,−1)

and (0,+1). A stable vector (X1, X2) will admit a representation on C
∥·∥
2 provided these

directions are irrelevant to characterise its distribution, that is, if Γ
(
{(0,−1), (0,+1)}

)
= 0.

In terms of tail dependence, the latter condition intuitively means that realisations (X1, X2)

where X2 is extreme and X1 is not almost never occur (i.e., occur with probability zero).6

6The conditions Γ
(
{(0, −1), (0, +1)}

)
= 0 and

∫
S2

∣∣ ln ∥s∥
∣∣Γ(ds) < +∞ can also be related to the

stronger condition ensuring the existence of conditional moments of X2 given X1 obtained in Cioczek-
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Provided the adequate representation exists, Property (1.1) then holds with semi-norms

instead of norms, providing the cornerstone for studying the tail conditional distribution

of stable processes.

Proposition 2.2 Let X = (X1, . . . , Xd) be an α-stable random vector and let ∥ · ∥ be a

seminorm on Rd. If X is representable on C∥·∥
d , then for every Borel sets A,B ⊂ C

∥·∥
d with

Γ∥·∥
(
∂(A ∩B)

)
= Γ∥·∥(∂B) = 0, and Γ∥·∥(B) > 0,

P∥·∥
x (X, A|B) −→

x→+∞

Γ∥·∥(A ∩B)
Γ∥·∥(B)

, (2.5)

where ∂B (resp. ∂(A ∩B)) denotes the boundary of B (resp. A ∩B), and

P∥·∥
x (X, A|B) := P

(
X

∥X∥
∈ A

∣∣∣∣∥X∥ > x,
X

∥X∥
∈ B

)
.

3 Unit cylinder representation for paths of stable linear pro-

cesses

Given a semi-norm, Proposition 2.2 is only applicable to stable vectors that are repre-

sentable on the corresponding unit cylinder. This section investigates under which condi-

tion on an stable moving average (Xt) vectors of the form (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h)

admit such representations. A characterisation is proposed and is then extended to linear

combination of stable moving averages. Any semi-norm satisfying (1.2) could be relevant

for the prediction framework mentioned in introduction. However to fix ideas and avoid

numerous cases with respect to all the possible kernels, we restrict to semi-norms such that

∥(x−m, . . . , x0, x1, . . . , xh)∥ = 0 ⇐⇒ x−m = . . . = x0 = 0, (3.1)

for any (x−m, . . . , xh) ∈ Rm+h+1, which in particular satisfy (1.2).

Georges and Taqqu (1994, 1998) (see also Theorem 5.1.3 in Samorodnitsky and Taqqu (1994)) and which

requires Γ not to be too concentrated around the points (0, ±1). Namely, assuming
∫

S2
|s1|−νΓ(ds) < +∞

for some ν ≥ 0, then E[|X2|γ |X1] < +∞ for γ < min(α + ν, 2α + 1), despite the fact that E[|X2|α] = +∞.

If the previous holds for some ν > 0, then necessarily both of the aforementioned conditions are satisfied.
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Example 3.1 Semi-norms on Rm+h+1 satisfying (3.1) can be naturally obtained from

norms on the m+ 1 first components of vectors. For any p ∈ [1,+∞], one can consider for

instance semi-norms ∥ · ∥ defined by

∥(x−m, . . . , x0, x1, . . . , xh)∥ =
( 0∑

i=−m

|xi|p
)1/p

,

for any (x−m, . . . , x0, x1, . . . , xh) ∈ Rm+h+1 with by convention
(∑0

i=−m |xi|p
)1/p =

sup
−m≤i≤0

|xi| for p = +∞.

3.1 The case of moving averages

Consider (Xt) the α-stable moving average defined by

Xt =
∑
k∈Z

dkεt+k, εt
i.i.d.∼ S(α, β, σ, 0) (3.2)

with (dk) a real deterministic sequence such that

if α ̸= 1 or (α, β) = (1, 0), 0 <
∑
k∈Z

|dk|s < +∞, for some s ∈ (0, α) ∩ [0, 1],

(3.3)

and

if α = 1 and β ̸= 0, 0 <
∑
k∈Z

|dk|
∣∣∣ ln |dk|

∣∣∣ < +∞. (3.4)

Letting for m ≥ 0, h ≥ 1,

Xt = (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h), (3.5)

it follows from Proposition 13.3.1 in Brockwell and Davis (1991) that the infinite series

converge almost surely and both (Xt) and Xt are well defined. The random vector Xt is

multivariate α-stable: denoting dk := (dk+m, . . . , dk, dk−1, . . . , dk−h) for k ∈ Z, the spectral
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representation of Xt on the Euclidean sphere reads (Γ,µ0) with

Γ = σα
∑

ϑ∈S1

∑
k∈Z

wϑ∥dk∥α
e δ{ ϑdk

∥dk∥e

}, (3.6)

µ0 = −1{α=1}
2
π
βσ

∑
k∈Z

dk ln ∥dk∥e,

where wϑ = (1 + ϑβ)/2, S1 = {−1,+1}, δ is the dirac mass and by convention, if for

some k ∈ Z, dk = 0, i.e. ∥dk∥e = 0, then the kth term vanishes from the sums. Notice

in particular that for β = 0, it holds that w−1 = w+1 = 1/2, µ0 = 0, and both the

measure Γ and the random vector Xt are symmetric. The next result characterises the

representability of Xt on a unit cylinder for fixed m and h.

Lemma 3.1 Let Xt satisfy (3.2)-(3.5) and let ∥ · ∥ be a semi-norm on Rm+h+1 satisfying

(3.1). For α ̸= 1 or (α, β) = (1, 0), the vector Xt is representable on C
∥·∥
m+h+1 if and only

if

∀k ∈ Z,
[
(dk+m, . . . , dk) = 0 =⇒ ∀ℓ ≤ k − 1, dℓ = 0

]
. (3.7)

For α = 1 and β ̸= 0, the vector Xt is representable on C
∥·∥
m+h+1 if and only if in addition

to (3.7), it holds that

∑
k∈Z

∥dk∥e

∣∣∣∣ ln (∥dk∥/∥dk∥e

)∣∣∣∣ < +∞. (3.8)

In the cases α ̸= 1 and (α, β) = (1, 0), the representability of Xt on a semi-norm unit

cylinder depends on the number of observation m + 1 but not on the prediction horizon

h. Moreover, it is easy to see that if (3.7) is true for some m ≥ 0, it then holds for any

m′ ≥ m. The case α = 1, β ̸= 0 is more intricate, the roles of m and h in the validity of

the additional requirement (3.8) not being as clear-cut.

A key distinction appears between moving averages according to whether finite length

paths admit semi-norm representations. This distinction especially matters for the appli-

cability of Proposition 2.5 when studying the conditional dynamics of a given process. The
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following definition thus introduces the notion of past-representability of a stable moving

average.

Definition 3.1 Let (Xt) be an α-stable moving average satisfying (3.2)-(3.4). We say

that the stable process (Xt) is past-representable if there exists at least one pair (m,h),

m ≥ 0, h ≥ 1, such that Xt = (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) is representable on C∥·∥
m+h+1

for some semi-norm satisfying (3.1). For any such pair (m,h), we will say that (Xt) is

(m,h)-past-representable.

Remark 3.1 It can be noticed that if Xt = (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) is repre-

sentable on C
∥·∥
m+h+1 for some semi-norm satisfying (3.1), then it is representable on unit

cylinders relative to any other semi-norms satisfying (3.1). This holds because (3.1) ensures

that all these semi-norms have the same kernel. The notion of past-representability can

thus be defined independently of the particular choice of a semi-norm.7

The following proposition provides a characterisation of past-representability.

Proposition 3.1 Let (Xt) be an α-stable moving average satisfying (3.2)-(3.4).

(ι) With the set M = {m ≥ 1 : ∃k ∈ Z, dk+m = . . . = dk+1 = 0, dk ̸= 0}, define

m0 =

 sup M, if M ≠ ∅,

0, if M = ∅.
(3.9)

(a) For α ̸= 1 or (α, β) = (1, 0), the process (Xt) is past-representable if and only if

m0 < +∞. (3.10)

Moreover, letting m ≥ 0, h ≥ 1, the process (Xt) is (m,h)-past-representable if and

only if (3.10) holds and m ≥ m0.

7This will not be true in general under the weaker assumption (1.2) and different notions of repre-

sentability of a process could emerge depending on the kernels of the semi-norms.
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(b) For α = 1 and β ̸= 0, the process (Xt) is past-representable if and only if in

addition to (3.10), there exist an m ≥ m0 and an h ≥ 1 such that (3.8) holds. If such

a pair (m,h) exists, (Xt) is then (m,h)-past-representable.

(ιι) Let ∥ · ∥ a seminorm satisfying (3.1) and assume that (Xt) is (m,h)-past-representable

for some m ≥ 0, h ≥ 1. The spectral representation (Γ∥·∥,µ∥·∥) of the vector Xt =

(Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) on C
∥·∥
m+h+1 is then given by (3.6) with the Euclidean norm

∥ · ∥e replaced by the semi-norm ∥ · ∥.

Remark 3.2 Note in particular that m0 = 0 if and only if for some k0 ∈ Z∪{−∞}, dk ̸= 0

for all k ≥ k0 and dk = 0 for all k < k0.

Remark 3.3 Proposition 3.1 shows that for an α-stable moving average to be past-

representable, sequences of consecutive zero values in the coefficients (dk) have to be either

of finite lengths, or infinite to the left. This surprisingly places the anticipativeness of a

stable moving average as a necessary –and sufficient for α ̸= 1 and (α, β) = (1, 0)– condition

for its past-representability. The less anticipative a moving average is, in the sense of the

larger the gaps of zeros in its forward-looking side, then the higher m has to be chosen so

as to have the representability of (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) on the appropriate unit

cylinder. Purely non-anticipative moving averages are in particular immediately ruled out.

Corollary 3.1 Let (Xt) an α-stable moving average satisfying (3.2)-(3.4). If (Xt) is purely

non-anticipative, i.e., dk = 0 for all k ≥ 1, then (Xt) is not past-representable.

Remark 3.4 This fault line between anticipativeness and non-anticipativeness sheds light

on the predictability of extreme events in linear processes. Consider for illustration the

two following α-stable AR(1) processes defined as the stationary solutions of

Xt = ρXt+1 + εt, ∀t ∈ Z, (3.11)

Yt = ρYt−1 + ηt, ∀t ∈ Z, (3.12)
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where 0 < |ρ| < 1, and (εt), (ηt) are independent i.i.d. stable sequences. While (Xt) gen-

erates bubble-like trajectories –explosive exponential paths eventually followed by sharp

returns to central values–, the trajectories of (Yt) feature sudden jumps followed by expo-

nential decays. In both processes, an extreme event stems from a large realisation of an

underlying error ετ or ητ , at some time τ . On the one hand for the non-anticipative AR(1)

(3.12), a jump does not manifest any early visible sign before its date of occurrence as it is

independent of the past trajectory. Jumps in the trajectory of (Yt) are unpredictable and

one only has information about their unconditional likelihood of occurrence. On the other

hand for the anticipative AR(1) (3.11), extremes do manifest early visible signs and are

gradually reached as their occurrence dates approach. The past trajectory is informative

about future extreme events, and in particular more informative than their plain uncondi-

tional likelihood of occurrence. Building on the “information encoding” interpretation of

spectral measures given in Remark 2.3, the fact that (Xt) (resp. (Yt)) is past-representable

(resp. not past-representable) can be seen as a consequence of the dependence (resp. in-

dependence) of future extreme events on past ones.

The condition for past-representability simplifies for ARMA processes and is equivalent to

the autoregressive polynomial having at least one root located inside the unit circle.

Corollary 3.2 Let (Xt) be the strictly stationary solution of

ψ(F )ϕ(B)Xt = Θ(F )H(B)εt, εt
i.i.d.∼ S(α, β, σ, 0),

where ψ, ϕ, Θ, H are polynomials of arbitrary finite degrees with roots located outside the

unit disk and F (resp. B) is the forward (resp. backward) operator: FXt := Xt+1 (resp.

BXt := Xt−1). We suppose furthermore that ψ and Θ (resp. ϕ and H) have no common

roots. Then, for any α ∈ (0, 2) and β ∈ [−1, 1], the following statements are equivalent:

(ι) (Xt) is past-representable,

(ιι) deg(ψ) ≥ 1,

(ιιι) m0 < +∞,
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with m0 as in (3.9). Moreover, letting m ≥ 0, h ≥ 1, the process (Xt) is (m,h)-past-

representable if and only if m ≥ m0 with m0 < +∞.

Remark 3.5 For ARMA processes, we can notice in particular that the discrepancy be-

tween the cases [α ̸= 1 or (α, β) = (1, 0)] and [α = 1, β ̸= 0] vanishes. Also, only the roots

of the AR polynomial matter for past-representability, the MA part having no role.

4 Tail conditional distribution of stable anticipative pro-

cesses

In this section, we will derive the tail conditional distribution of linear stable processes for

which Proposition 2.2 will be applicable. The case of a general past-representable stable

process is considered as well as particular examples.

To be relevant for the prediction framework, the Borel set B appearing in Proposition

2.2 has to be chosen such that the conditioning event {∥Xt∥ > x} ∩ {Xt/∥Xt∥ ∈ B} is

independent of the future realisations Xt+1, . . . , Xt+h. For ∥ · ∥ a semi-norm on Rm+h+1

satisfying (3.1), denote S∥·∥
m+1 = {(s−m, . . . , s0) ∈ Rm+1 : ∥(s−m, . . . , s0, 0, . . . , 0)∥ = 1}.8

Then, for any Borel set V ⊂ S
∥·∥
m+1, define the Borel set B(V ) ⊂ C

∥·∥
m+h+1 as

B(V ) = V × Rh.

Notice in particular that for V = S
∥·∥
m+1, we have B(V ) = C

∥·∥
m+1. In the following, we will use

Borel sets of the above form to condition the distribution of the complete vector Xt/∥Xt∥

on the observed “shape” of the past trajectory. The latter information is contained in the

Borel set V , which we will typically assume to be some small neighbourhood on S
∥·∥
m+1. It

will be useful in the following to notice that

V × Rh =
{

s ∈ C
∥·∥
m+h+1 : f(s) ∈ V

}
,

8The set S
∥·∥
m+1 corresponds to the unit sphere of Rm+1 relative to the restriction of ∥ ·∥ to the first m+1

dimensions.
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where f the function defined by

f :
Rm+h+1 −→ Rm+1

(x−m, . . . , x0, x1, . . . , xh) 7−→ (x−m, . . . , x0)
. (4.1)

4.1 Stable past-representable processes: general case

Let (Xt) an α-stable process satisfying Definition 3.1. This states that (Xt) is (m,h)-past-

representable, for some m ≥ 0, h ≥ 1 and let Xt as in (3.5). Denoting Γ∥·∥ the spectral

measure of Xt on the unit cylinder C∥·∥
m+h+1 for some semi-norm satisfying (3.1), we know

by Proposition 3.1 (ιι), that Γ∥·∥ is of the form

Γ∥·∥ =
∑

ϑ∈S1

∑
k∈Z

wϑ∥dk∥αδ{ ϑdk

∥dk∥

}. (4.2)

Proposition 4.1 Under the above assumptions, we have

P∥·∥
x

(
Xt, A

∣∣∣B(V )
)

−→
x→+∞

Γ∥·∥
({

ϑdk

∥dk∥
∈ A : ϑf(dk)

∥dk∥
∈ V

})

Γ∥·∥

({
ϑdk

∥dk∥
∈ C

∥·∥
m+h+1 : ϑf(dk)

∥dk∥
∈ V

}) , (4.3)

for any Borel sets A ⊂ C
∥·∥
m+h+1, V ⊂ S

∥·∥
m+1 such that

{
ϑdk

∥dk∥
∈ C

∥·∥
m+h+1 : ϑf(dk)

∥dk∥
∈ V

}
̸=

∅, Γ∥·∥
(
∂(A ∩B(V ))

)
= Γ∥·∥(∂B(V )) = 0, where B(V ) = V × Rh and f is as in (4.1).

Remark 4.1 (ι) Setting V = S
∥·∥
m+1, and A an arbitrarily small closed neighbourhood of all

the points (ϑdk/∥dk∥)ϑ,k, we can see that lim
x→+∞

P
(
Xt/∥Xt∥ ∈ A

∣∣∣∥Xt∥ > x
)

= 1. In other

terms, when far from central values, the trajectory of process (Xt) necessarily features pat-

terns of the same shape as some ϑdk/∥dk∥, which is a finite piece of a moving average’s co-

efficient sequence. The index k points to which piece (dk+m, . . . , dk, dk−1, . . . , dk−h) of this

moving average it corresponds, and ϑ ∈ {−1,+1} indicates whether the pattern is flipped

upside down (in case the extreme event is driven by a negative value of an error (ετ )). The

likelihood of a pattern ϑdk/∥dk∥ can be evaluated by setting A to be a small neighbourhood
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of that point. (ιι) In view of point (ι), the observed path (Xt−m, . . . , Xt−1, Xt)/∥Xt∥ will

a fortiori be of the same shape as some ϑ(dk+m, . . . , dk+1, dk)/∥dk∥ when an extreme event

will approach in time. Observing the initial part of the pattern can give information about

the remaining unobserved piece: the conditional likelihood of the latter can be assessed by

setting V to be a small neighbourhood of the observed pattern.

Remark 4.2 The tail conditional distribution given in (4.3) highlights three types of un-

certainty/approximation for prediction:9

(ι) In practice, events of the type

{(Xt−m, . . . , Xt−1, Xt)/∥Xt∥ = ϑ(dk+m, . . . , dk+1, dk)/∥dk∥}

have probability zero of occurring, and only noisy observations such as

(Xt−m, . . . , Xt−1, Xt)/∥Xt∥ ≈ ϑ(dk+m, . . . , dk+1, dk)/∥dk∥ are available on a realised

trajectory. The choice of an adequate conditioning neighbourhood V in (4.3) given a piece

of trajectory will thus have to rely on a statistical approach. One could envision tests of

hypotheses to determine whether a piece of realised (noisy) trajectory “is more similar” to

a certain pattern 1 or to an other pattern 2.

(ιι) Even for an arbitrarily small neighbourhood V –that is, even if the observed path

can be confidently identified with a particular pattern– uncertainty regarding the future

trajectory may remain. It could indeed be that several patterns ϑdk/∥dk∥ coincide on

their first m + 1 components, but differ by the last h. The stable anticipative AR(1) is a

typical example of this phenomenon that will be studied in the next section. Interestingly,

the stable anticipative AR(2) eludes to this as discussed in hereafter.

(ιιι) The tail conditional distribution (4.3) is an asymptotic behaviour as the (semi-)norm

of Xt grows infinitely large. It is thus only an approximation of the true dynamics
9The considerations developed in this remark focus solely on the probabilistic uncertainty of the predic-

tion assuming that the process (Xt) is entirely known, that is, no parameter nor any sequence (dj,k) has to

be inferred from data.
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during extreme events. It would be interesting to obtain a finer asymptotic development

in x of the above convergence to gauge the approximation error of the true conditional

distribution. It would be especially useful to quantify how far from/how variable around

the predicted patterns the future path can be.

4.2 The anticipative AR(1)

We now consider (Xt) the stable anticipative AR(1) processes defined by

Xt = ρXt+1 + εt, 0 < |ρ| < 1, (4.4)

where (εt)t∈Z
i.i.d.∼ S(α, β, 1, 0). The moving average coefficient is of the form (ρk1{k≥0})k,

and thus, m0 = 0 as stated in (3.9). By Corollary (3.2), we know that for any m ≥ 0,

h ≥ 1, (Xt) is (m,h)-past-representable. The spectral measures of paths Xt simplify and

charge finitely many points. Their forms are given in the next lemma.

Lemma 4.1 Let (Xt) be an α-stable anticipative AR(1) processes as in (4.4). Letting Xt

as in (3.5) for m ≥ 0, h ≥ 1, its spectral measure on C
∥·∥
m+h+1 for a seminorm satisfying

(3.1) is given by

Γ∥·∥ =
∑

ϑ∈S1

[
wϑδ{(ϑ,0,...,0)} + wϑ

h−1∑
k=−m+1

∥dk∥αδ{ ϑdk

∥dk∥

} + w̄ϑ

1 − |ρ|α
∥dh∥αδ{ ϑdh

∥dh∥

}],
(4.5)

where for all ϑ ∈ S1 and −m+ 1 ≤ k ≤ h,

dk = (ρk+m1{k≥−m}, . . . , ρ
k1{k≥0}, ρ

k−11{k≥1}, . . . , ρ
k−h1{k≥h}),

wϑ = (1 + ϑβ)/2,

w̄ϑ = (1 + ϑβ̄)/2,

β̄ = β
1 − ρ<α>

1 − |ρ|α
,

and if h = 1 and m = 0, the sum
∑h−1

k=−m+1 vanishes by convention.
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The next proposition provides the tail conditional distribution of future paths in the case

where ρ is positive. Let us first introduce useful neighbourhoods of the distinct charged

points of Γ∥·∥. Denote d0,−m = (
m+h+1︷ ︸︸ ︷

1, 0, . . . , 0) so that the charged points of Γ∥·∥ are all of the

form ϑdk/∥dk∥ with indexes (ϑ, k) in the set I := S1×
(
{−m,h}∪{(0,−m)}

)
. With f as in

(4.1), define for any (ϑ0, k0) ∈ I, the set V0 as any closed neighbourhood of ϑ0f(dk0)/∥dk0∥

such that

∀(ϑ′, k′) ∈ I, ϑ′f(dk′)
∥dk′∥

∈ V0 =⇒ ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

, (4.6)

In other terms, V0 ×Rd is a subset of C∥·∥
m+h+1 in which the only points charged by Γ∥·∥ all

have the first (m+ 1)th coinciding with ϑ0f(dk0)/∥dk0∥. Define also Aϑ,k for any (ϑ, k) as

any closed neighbourhood of ϑdk/∥dk∥ which does not contain any other charged point of

Γ∥·∥, that is,

∀(ϑ′, k′) ∈ I, ϑ′dk′

∥dk′∥
∈ Aϑ,k =⇒ (ϑ′, k′) = (ϑ, k). (4.7)

Proposition 4.2 Let (Xt) be an α-stable anticipative AR(1) processes as in (4.4) with

ρ ∈ (0, 1). Let Xt, the dk’s and the spectral measure of Xt be as given in Lemma 4.1,

for any m ≥ 0, h ≥ 1. Let V0 be any small closed neighbourhood of ϑ0f(dk0)/∥dk0∥ in

the sense of (4.6) for some (ϑ0, k0) ∈ I and let B(V0) = V0 × Rh. Then, with Aϑ,k an

arbitrarily small neighbourhood of some ϑdk/∥dk∥ as in (4.7), the following hold.

(ι) Case m ≥ 1.

(a) If 0 ≤ k0 ≤ h:

P∥·∥
x

(
Xt, Aϑ,k

∣∣∣B(V0)
)

−→
x→∞


|ρ|αk(1 − |ρ|α)δϑ0(ϑ), 0 ≤ k ≤ h− 1,

|ρ|αhδϑ0(ϑ), k = h.

(b) If −m ≤ k0 ≤ −1:

P∥·∥
x

(
Xt, Aϑ,k

∣∣∣B(V0)
)

−→
x→∞

δϑ0(ϑ)δk0(k).
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(ιι) Case m = 0.

P∥·∥
x

(
Xt, Aϑ,k

∣∣∣B(V0)
)

−→
x→∞



wϑ0

pϑ0

δ{ϑ0}(ϑ), k = 0

|ρ|αk(1 − |ρ|α)δ{ϑ0}(ϑ), 1 ≤ k ≤ h− 1,

|ρ|αhδ{ϑ0}(ϑ), k = h,

with pϑ0 = wϑ0/(1 − |ρ|α).

Remark 4.3 For m ≥ 1, that is, if the observed path is assumed to be of length at least 2,

there is a significant difference between whether k0 ∈ {0, . . . , h} or k0 ∈ {−m, . . . ,−1}. For

the latter, the asymptotic probability of the whole path Xt/∥Xt∥ being in an arbitrarily

small neighbourhood of ϑdk/∥dk∥ is 1 if and only if ϑ = ϑ0, k = k0: given the observed path,

the shape of the future trajectory is fully determined. For the former, this probability is

strictly positive if and only if ϑ = ϑ0, but the observed pattern is compatible with several

distinct future paths. One can see why this is the case from the form of the sequences

dk/∥dk∥ and of their restrictions to the first m + 1 components f(dk)/∥dk∥. On the one

hand (omitting ϑ),

dk

∥dk∥
=



(

m+1︷ ︸︸ ︷
ρk+m, . . . , ρk,

h︷ ︸︸ ︷
ρk−1, . . . , ρ, 1, 0, . . . , 0)

∥(ρk+m, . . . , ρk, ρk−1, . . . , ρ, 1, 0, . . . , 0)∥ , for k ∈ {0, . . . , h},

(ρk+m, . . . , ρ, 1, 0, . . . , 0, 0, . . . , 0)
∥(ρk+m, . . . , ρ, 1, 0, . . . , 0︸ ︷︷ ︸

m+1

, 0, . . . , 0︸ ︷︷ ︸
h

)∥
, for k ∈ {−m, . . . ,−1}.

We can notice that all the above sequences are pieces of explosive exponentials, terminated

at some coordinate. For k ∈ {0, . . . , h}, the first zero component –the “crash of the

bubble”–, is situated at or after the (m+ 2)th component, whereas for k ∈ {−m, . . . ,−1},
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it is situated at or before the (m+1)th. Using the homogeneity of the semi-norm and (1.2),

we have on the other hand that

f(dk)
∥dk∥

=



(
m+1︷ ︸︸ ︷

ρm, . . . , ρ, 1)
∥(ρm, . . . , ρ, 1︸ ︷︷ ︸

m+1

, 0, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
h

)∥ , for k ∈ {0, . . . , h},

(

m+1︷ ︸︸ ︷
ρk+m, . . . , ρ, 1, 0, . . . , 0)

∥(ρk+m, . . . , ρ, 1, 0, . . . , 0︸ ︷︷ ︸
m+1

, 0, . . . , 0︸ ︷︷ ︸
h

)∥
, for k ∈ {−m, . . . ,−1}.

Thus, conditioning the trajectory on the event {f(Xt)/∥Xt∥ ≈ f(dk0)/∥dk0∥} for some

k0 ∈ {−m, . . . ,−1} amounts to condition on the burst of a bubble being observed in

the past trajectory with no new bubble forming yet, which allows to identify exactly the

position of the pattern on the moving average’s coefficient sequence.

When conditioning with k0 ∈ {0, . . . , h} however, the crash date is not observed and can

happen either in the next h−1 periods, or after h. However, the shape of the observed path

is that of a piece of exponential with growth rate ρ−1 regardless of the remaining time before

the burst, which leaves several future paths possible. One can quantify the likelihood of

each potential scenario: the quantity |ρ|αk(1−|ρ|α) corresponds to the probability that the

bubble will peak in exactly k periods (0 ≤ k < h), and |ρ|αh corresponds to the probability

that the bubble will last at least h more periods.

Remark 4.4 (ι) The previous remark confirms the interpretation of the conditional mo-

ments proposed in Fries (2021). It also extends it by accounting for paths rather than point

prediction. (ιι) Notice that for m = 0 (only the present value is assumed to be observed),

no pattern can be observed but only the sign of the shock. Hence, the growth rate ρ−1

of the ongoing event is unidentifiable, which is reflected in the fact that the asymptotic

probabilities of paths with growth rates ρ−1, are positive (case (ιι) of Proposition 4.2).
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4.3 The anticipative AR(2) and fractionally integrated white noise

We focus here on two processes which both share the peculiar property of having a 0-1

tail conditional distribution whenever the observed path is of length at least 2 (i.e.,

m ≥ 1): the anticipative AR(2) and the anticipative fractionally integrated white noise

(FWN). For an adequate choice of the parameters, the former can generate bubble-like

trajectories with accelerating or decelerating growth rate and the latter can accommo-

date hyperbolic bubbles. In contrast with the anticipative AR(1), these bubbles do

not display an exponential profile but still feature an inflation-peak-collapse behaviour.

Any extension of those two minimal specifications should preserve the following statements.

Anticipative AR(2)

The anticipative AR(2) is the strictly stationary solution of

(1 − λ1F )(1 − λ2F )Xt = εt, εt
i.i.d.∼ S(α, β,σ, 0), (4.8)

where λi ∈ C and 0 < |λi| < 1 for i=1,2. In case λi ∈ C \ R, i = 1, 2, we impose that

λ1 = λ̄2 to ensure (Xt) is real-valued. We further assume that λ1 + λ2 ̸= 0, to exclude the

cases where (X2t) and (X2t+1) are independent anticipative AR(1) processes. The solution

of (4.8) admits the moving average representation Xt =
∑

k∈Z dkεt+k with

dk =


λk+1

1 − λk+1
2

λ1 − λ2
1{k≥0}, if λ1 ̸= λ2,

(k + 1)λk 1{k≥0}, if λ1 = λ2 = λ.

(4.9)

Anticipative fractionally integrated white noise

The anticipative FWN process can be defined as the stationary solution of

(1 − F )dXt = εt, εt
i.i.d.∼ S(α, β,σ, 0), (4.10)

with α(d − 1) < −1. The solution of (4.10) admits the moving average representation

Xt =
∑+∞

k=0 dkεt+k with d0 = 1 and

dk = Γ(k + d)
Γ(d)Γ(k + 1) 1{k≥0}, for k ̸= 0, (4.11)
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where Γ( · ) denotes –here only– the Gamma function.

It can be shown that both process are necessarily (m,h)-past-representable for m ≥ 1 and

h ≥ 1. The 0-1 tail conditional distribution property when the observed path is of length

at least 2 is exhibited in the next proposition.

Proposition 4.3 Let (Xt) be the α-stable anticipative AR(2) (resp. fractionally integrated

AR) as in (4.8)-(4.9) (resp. (4.10)-(4.11)). For any m ≥ 1 and h ≥ 1, let Xt as in (3.5)

and dk = (dk+m, . . . , dk, dk−1, . . . , dk−h) where (dk) is as in (4.9) (resp. (4.11)). Let V0 a

small neighbourhood of ϑ0dk0/∥dk0∥ as in (4.6) –where we drop the indexes j– for some

ϑ0 ∈ S1, k0 ≥ −m, and let B(V0) = V0 × Rh. Then,

P∥·∥
x

(
Xt, A

∣∣∣B(V0)
)

−→
x→∞


1, if ϑ0dk0

∥dk0∥
∈ A,

0, otherwise,

for any closed neighbourhood A ⊂ C
∥·∥
m+h+1 such that

∂A ∩ {ϑdk/∥dk∥ : ϑ ∈ S1, k ≥ −m} = ∅.

Remark 4.5 Contrary to the anticipative AR(1), the trajectories of the anticipative AR(2)

and fractionally integrated processes do not leave room for indeterminacy of the future

path. Asymptotically, given any observed path of length at least 2, the shape of the

future trajectory can be deduced deterministically. This holds even if the peak/collapse

of a bubble is not yet present in the observed piece of trajectory. Therefore, provided

the current pattern is properly identified,10 it appears possible in the framework of these

models to infer in advance the peak and crash dates of bubbles with very high confidence

–in principle, with certainty.
10See point (ι) of Remark 4.2.
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5 Monte Carlo study and numerical analysis

In this section, we take advantage of our theoretical results in different ways. In particular,

we suggest two forecasting procedures and demonstrate their performances in finite sam-

ples. We also use numerical simulations to provide a visual illustration of the unit cylinder

in the particular case of a {0, 1} tail conditional distribution.

5.1 Visualisation of the unit cylinder

In the spirit of the Remark 2.3, we consider an α-stable vector Xt = (Xt−1, Xt, Xt+1) where

Xt is an anticipative AR(2) specified as in 5.2. Xt being past-representable, it admits a

representation on the unit-cylinder. Furthermore, as discussed in 4.3, its spectral measure

exhibits the following asymptotic behavior

P∥·∥
x

(
Xt, A

∣∣∣B(V0)
)

−→
x→∞

Γ∥·∥
(
A ∩

{
ϑ0dk0

∥dk0∥

})

Γ∥·∥

({
ϑ0dk0

∥dk0∥

}) .

and hence P∥·∥
x

(
Xt, A

∣∣∣B(V0)
)

is either 1 or 0. This peculiar {0, 1} tail conditional distri-

bution leads to the following graphical representation on the unit-cylinder (see Figure 1.a).

The simulation of Xt is performed for a sample size n = 1000.

We clearly see that C
∥·∥
3 spans all directions of R3 but the ones of (0, 0,−1) and

(0, 0,+1). This is of no consequence as the representability property holds and implies that

Γ
(
{(0, 0,−1), (0, 0,+1)}

)
= 0 as x → ∞. In other words, the semi-norm representability

reflect the fact that extreme realizations of Xt+1 never occur conditionally to small reali-

sations of Xt−1 and Xt. Those inaccessible coordinates are indicated by the two red cross.

In the opposite case where we represent Xt on the unit sphere, S3 spans all directions

of R3 and describes any potential tail dependence of (Xt−1, Xt, Xt+1). This includes the

tail dependence between Xt+1 and the past, which reflects the odd (and rare, as depicted
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Figure 1: Unit cylinder and unit sphere representations of Xt = 0.7Xt+1 + 0.1Xt+2 + εt
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in Figure 1.b) situation where the realisation of Xt+1 is extreme whereas immediate past

realisations are not.

5.2 Forecasting crash probabilities

To illustrate through simulations that the probability on the left-hand side of Proposi-

tion 4.3 converges to the right-hand side when the conditioning value ∥Xt∥ is large, we

generate 1000 trajectories of N = 106 observations from the anticipative AR(2) process

Xt = 0.7Xt+1 +0.1Xt+2 +εt where εt
i.i.d.∼ S(1.5, 1, 0.5, 0). We focus here on the case m = 1

and evaluate the crash probabilities at different forecasting horizons h = (1, 5, 10). The

left-hand side of Proposition 4.3 needs two types of conditioning. First we condition on

∥Xt∥ to be large, and we choose
√
X2

t +X2
t−1 ≥ 2q with q is a theoretical quantile of the

marginal distribution of Xt. Second we define the conditioning of the small neighbourhood
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B(V0) and we set for m = 1 and

B(V0) =
[
ϑ0dk0−1
∥dk0∥

− 0.1, ϑ0dk0−1
∥dk0∥

+ 0.1
]

×
[
ϑ0dk0

∥dk0∥
− 0.1, ϑ0dk0

∥dk0∥
+ 0.1

]
.

We also set A = B(V0) × [−δ, δ], with δ = 0.3. This is equivalent to estimating the

probability of a crash at horizon h. For each simulated trajectory, we compute the two

following estimators, one for the probability on the left-hand side of Proposition 4.3 defined

as

p̂q =

∑N−h
t=1 1({ (Xt−1,Xt)

∥Xt∥ ∈B(V0)
}

∩{
Xt+h
∥Xt∥ ≤δ}∩{∥Xt∥>2q}

)
∑N−h

t=1 1({ (Xt−1,Xt)
∥Xt∥ ∈B(V0)

}
∩{∥Xt∥>2q}

) (5.1)

and the other one for the probability on the right-hand side of Proposition 4.3 pq. pq is

computed as follows:

pq =

∑N−h
t=1 1({ (Xt−1,Xt)

∥Xt∥ ∈B(V0)
}

∩{
dk0+h

∥dk0 ∥ ≤δ}∩{∥Xt∥>2q}
)

∑N−h
i=1 1({ (Xt−1,Xt)

∥Xt∥ ∈B(V0)
}

∩{∥Xt∥>2q}
) (5.2)

According to Proposition 4.3, these two probabilities have to converge to the same value,

because Xt/∥Xt∥ ∈ A, is equivalent to dk0/∥dk0∥ ∈ A. To estimate the dk0 , and check

whether Xt/∥Xt∥ ∈ B(V0), we determine the sample of size m of the dk deterministic path

which Xt/∥Xt∥ is in B(V0). To do so, first, we compute Xt/∥Xt∥ for m = 1. Second, we

evaluate ϑdk/∥dk∥ for k ∈ (k, k̄) where k = 30 and k̄ = 0. Finally we check whether some

ϑdk/∥dk∥ belongs to a small neighborhood of Xt/∥Xt∥.

Table 1 gathers the average of pq and p̂q empirical probabilities across the M simulations

along empirical 95% confidence. One notices that the empirical probabilities indeed come

very close to the theoretical ones as q increases.

5.3 Forecasting crash dates

One can also apply Proposition 4.1 to infer information on future paths from the observed

trajectory, as long as it deviates far enough from central values. We document that in
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Table 1: Comparison of theoretical and empirical crash probabilities at horizons h = 1, 5, 10

of bubbles generated by the noncausal AR(2)

h = 1 h = 5 h = 10

p0.9\p̂0.9 84.09\22.75 (22.39-23.14) 93.00\39.70 (39.27-40.14) 98.45\46.76 (46.32-47.21)

p0.99\p̂0.99 91.56\89.11 (87.90-90.36) 95.55\94.63 (93.67-95.56) 95.71\96.85 (96.11-97.56)

p0.999\p̂0.999 99.50\98.75 (97.04-100) 99.40\99.40 (98.21-100) 99.72\99.67 (98.63-100)

p0.9999\p̂0.9999 99.96\99.86 (96.42-100) 99.91\99.92 (99.90-100) 99.97\99.98 (100-100)

Notes: The theoretical crash probabilities pq are computed using (5.2). Empirical average (Mean) and

95% confidence intervals (95%-CI) of the estimated probabilities are computed using (5.1) on M = 1000

simulated trajectories of N = 106 observations, for q = qa several a-quantiles of the marginal distribution

of Xt.

practice, for large values of x, the approximation

Xt/∥Xt∥ ≈ ϑ(dk+m, . . . , dk+1, dk)/∥dk∥, Xt = (Xt−m, . . . , Xt−1, Xt),

can be used to derive the next crash date and then estimate the future path up to t + h.

We also discuss to what extent the sources of uncertainty listed in Remark 4.2 affect the

performance of our procedure in presence of finitely large realisations. As for a range of

realisations, we ignore to which piece of the moving average trajectory it corresponds, we

pay particular attention to the selection of k0 and the impact of m.

Our forecasting procedure proceeds in 4 steps. First, we compute Xt/∥Xt∥ for a given

m. Second, we evaluate ϑdk/∥dk∥ for k ∈ (k, k̄) where k = 30 and k̄ = 0. Third, we check

whether some ϑdk/∥dk∥ belong to a small neighborhood A of Xt/∥Xt∥. If k0 cannot be

identified because several values k satisfied this condition, we reduce the neighbourhood

until a unique k = k0 remains. The last step simply consists of using the deterministic

trajectory of dk0 to iterate up to dk−h = 0 and hence obtain the bubble burst date. At

this stage, we structure Xt as in (3.5) and dk0 as (dk+m, . . . , dk, dk−1, . . . , dk−h). From

Proposition 4.3 we know that if Xt is anticipative enough, its future path will follow the
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one of dk0 with a very high level of confidence such that

(Xt−m, . . . , Xt−1, Xt, Xt+1, . . . , Xt+h)/∥Xt∥ ≈ ϑ0(dk+m, . . . , dk+1, dk, dk−1, . . . , dk−h)/∥dk∥,

hence offering the possibility to predict Xt+1, . . . , Xt+h.

This procedure is likely to be sensible to the selection of m. We investigate this issue

by considering m = {1, 3, 5, 7, 9, 11}. We also anticipate that, how far we deviate from the

Gaussian distribution, in terms of tail index, is likely to affect the results, and hence we

consider α = {0.9, 1.2, 1.5, 1.8}. Each simulated path is governed by a SαS anticipative

AR(2) of the following form: Xt = 0.7Xt+1 + 0.1Xt+2 + εt where εt
i.i.d.∼ S(α, 0, 0.1, 0). For

a given artificial time series xt, we identify a positive bubble peak as max(xt) and treat

as unobserved the remaining values of the series and the ⌈N × 0.01⌉ periods preceding

the bubble burst. We then explore all these scenarios for N = {250, 500, 1000} (i.e. k0 =

{3, 5, 10}) and 1000 trajectories. In theory, N should not impact the prediction performance

but we use it here to control the quantile of the last in-sample observation. More precisely,

our simulation framework results in the quantiles reported in Table 2 and allows us to

investigate the impact of departing from the asymptotic theory (x → ∞). For instance,

we can see that for N = 1000, the last in-sample observation used to predict an extreme

event that surge 10 periods ahead, actually corresponds to the quantile 0.91 when α = 1.5.

Table 2: Quantile of the last in-sample observation
N/α 0.9 1.2 1.5 1.8

250 0.99 0.99 0.99 0.94

500 0.98 0.98 0.94 0.89

1000 0.97 0.96 0.91 0.78

In such a configuration, the realisations of Xt are likely to be only moderately large

compared to the asymptotic requirements (x → ∞). Accordingly, in the simulation results,

we report the labels “High”, “Quite High”, “Moderately High”, rather than the sample
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sizes. For each simulation, we compute the bias as the difference between the predicted

crash date and the true simulated date.

Table 3: Bias for the crash date predictor
m = 1 m = 3

qXt
/α 0.9 1.2 1.5 1.8 0.9 1.2 1.5 1.8

High -0.9785 -0.3985 0.0262 0.2199 -0.7320 -0.2420 -0.0073 0.2815

Quite High 0.7174 1.3771 1.9292 2.2544 0.9421 1.6189 2.0938 2.2914

Moderately High 5.8112 6.6166 7.1317 7.4263 6.0680 6.8229 7.1698 7.3565

m = 5 m = 7

qXt
/α 0.9 1.2 1.5 1.8 0.9 1.2 1.5 1.8

High -0.5457 -0.2076 0.0483 0.2300 -0.5043 -0.1256 0.1099 0.2715

Quite 1.2378 1.7442 2.1075 2.3412 1.2978 1.8118 2.0987 2.2571

Moderately High 6.2749 6.9284 7.2065 7.3582 6.3193 6.9760 7.2655 7.3763

m = 9 m = 11

qXt
/α 0.9 1.2 1.5 1.8 0.9 1.2 1.5 1.8

High -0.4079 -0.0811 0.1556 0.2976 -0.4200 -0.0480 0.1891 0.3300

Quite High 1.3407 1.8471 2.1537 2.2857 1.3633 1.8568 2.1417 2.3565

Moderately High 6.3805 7.0095 7.2599 7.4021 6.4407 7.0253 7.3097 7.4745

The results are reported in Table 3. No matter the tail index considered, our procedure

can predict the crash date with a bias less than one period as long as Xt is sufficiently

large and m is carefully chosen. However, the results shed light on the crucial role of

the limit theory, as the predicted crash date is considerably more biased when the shape

of the trajectory is inferred from an observation that corresponds to a moderately high

quantile. In such a case, the selection of m is also very important as a large m introduces

more noise from observations that presumably belongs to lower quantiles (as we focus
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on positive shocks here). For a given m, the performance deteriorates when α increases,

thereby involving quantiles far from the asymptotic theory (e.g. qXt ≈ 0.78 when N = 1000

and α = 1.8) and more noise. This confirms the Remark 3.3.

Our theory states that when x → ∞, m = 1 can be sufficient. But in practice, the

simulation study reveals that the optimal selection of m is not obvious as it interact in a

complex manner with the tail index α. For instance, when Xt is very high and the tail

index is close to 1, a larger m improves the performance of the forecasting procedure. This

is not very surprising as Xt is far from central values, Xt/∥Xt∥ is very collinear to the

moving average coefficients and the m past observations are not too noisy and help to

identify the pattern. At the opposite, when the tail index get closer to the “light” tail

case, larger values of m become detrimental and small m are preferable. The same analysis

holds for Xt large and moderately large.

6 Forecasting climate anomalies

A growing literature highlights the impact of climate variables on economic performance

(Dell et al., 2014), a key variable to identify this impact is the El Niño (resp. La Niña)

weather shocks. It is known that these shocks have an impact among others on growth,

inflation, energy and agricultural commodity returns (Brenner, 2002; Cashin et al., 2017;

Makkonen et al., 2021). Providing a forecast of El Niño weather shocks, is of primary

interest, as it provides numerous societal benefits, from extreme weather warnings to agri-

cultural planning (Alley et al., 2019). El Niño intensity is defined as a value construct from

the Southern Oscillation Index (SOI)11 This section discusses the performance of the pro-

posed approach in detecting the peak of an El Niño (resp. La Niña) shock and assesses the

probability of staying in these episode h period ahead. We split the data in an in-sample
11Data and methodology to construct the SOI are available here https://www.ncei.noaa.gov/access/

monitoring/enso/soi. SOI is a monthly variable based on air-pressure differentials in the South Pacific,

between Tahiti and Darwin.
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Figure 2: Southern Oscillation Index (SOI)
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period (from 01/1951 to 12/1991) and an out-of-sample period (from 01/1992 to 01/2024),

to test the robustness of our forecasting procedure. Figure 2 display the data sample where

the shaded area corresponds to the out-of-sample data. The alternance of boom and burst

which seem to be an identifiable deterministic pattern, is distinguishable in Figure 2.

We then rely on the procedure of Lanne and Saikkonen (2011) and the MARX package

(see Hecq et al., 2017b, 2020) to select the best specification for SOI. Table 4, summarise

the results of this procedure: BIC determine the ppseudo = r+s, here equal to 2, then using

likelihood criterion, we select the best specification for causal-non-causal models, which is

the anticipative AR(2)

(1 − φ1F − φ2F
2)Xt = εt

. Table 5 reports the estimation results for the anticipative AR(2) parameters that drive the

dynamics of SOI. The parameters of the retained model are subsequently estimated using
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a modified version of the MARX package suitable for α-stable laws. Standard deviations

are estimated using finite differences gradient and Hessian for the parameters in the right

space. From Table 5, Ljoung-Box (LB-Test) show that all the autocorrelation in the

residuals of AR(2) are removed and the Jarque-Bera test (JB-Test) that the residuals are

indeed non-gaussian (α <2).

Table 4: Identification of non causal processes for SOI

BIC AR(2,0) AR(1,1) AR(0,2)

ppseudo Likelihood

2 -513.710 -510.764 -507.253

Table 5: AR(2) estimation for SOI

φ1 φ2 α β σ µ

0.63∗∗∗ 0.28∗∗∗ 1.75∗∗∗ 0.063∗ 0.52∗∗∗ -0.05∗

(5.22E-13) (2.11E-12) (5.03E-7) (5.54E-4) (1.94E-07) (1.78E-07)

Specification test Stats p-value

LB-Test (lag=5) 7.81 0.16

JB-Test 20.76 < 10−5

Notes: Estimated parameters of α-stable anticipative AR(2) process associated with the SOI series

for the period 01/1951 - 12/1991. Standard deviations are in parentheses. Asterisks ∗, ∗∗, and ∗∗∗

indicate significance at the 90%, 95% and 99% level, respectively.

An El Niño (resp. La Niña) shock, is defined as SOI below -1 (resp. over 1) during at

least the 3 periods. We hence estimate the probability of SOI to go back toward central

values after h periods with h = 3, 5 by using the procedure detailed in Section 5.2. We

set the same neighbourhood B(V0) of Xt/∥Xt∥ and we consider that ∥Xt∥ is large when√
X2

t +X2
t−1 ≥ 2q with q = q0.95, the quantile at 95% of the marginal distribution of Xt.

12

As we rely on 492 in-sample (877 whole-sample) observations, higher quantiles are sparse
12We apply our procedure to the absolute value of SOI.
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and cannot be considered here. We choose δ = 0.3. The results are reported in Table 6 and

exhibit a very high empirical (average) probability of returning to central values 3 periods

ahead. However, this probability is less than unity revealing that El Niño episodes can

occur (or persist if the SOI was already above 1 or below -1 for several periods). When

h = 5, p̂0.95 = 1 meaning that very persistent El Niño (resp. La Niña) occurrences are

unlikely to appear.

Table 6: Comparison of theoretical and empirical SOI reversal probabilities
h = 1 h = 3 h = 5

In-sample p0.95\p̂0.95 60.00\65.00 100\65.00 100.00 \100.00

Out-of-sample p0.95\p̂0.95 58.00\53.00 76.00 \100.00 100.00\100.00

Notes: The theoretical reversal probabilities pq are computed using (5.2). Empirical average prob-

abilities are computed using (5.1).

The reversal probabilities are useful to determine the probability of eluding dramatic

climatic events such as strong and persistent La Niña or El Niño occurrences. In this

context, forecasting the reversal date, that is the end of La Niña or El Niño, is also of

particular interest. We hence take advantage of Proposition 4.3 to predict the reversal

date of the El Niño occurrence that presumably starts at the end of the in-sample period.

As this last observation is below -1, we admit that x is far from central values. Following

the methodology of the simulation study (see 5.3), we determine k0 for various values

of m ∈ [1, 10]. As α̂ ≈ 1.9 exhibits light tails, we might encounter some difficulties in

applying our pattern recognition procedure: far from the peak (m large) we are more likely

to observe values from the center of the distribution. On the other hand, m = 1 might lead

to imprecise results as few past information is used to determine the piece of trajectory and

the process is not strongly anticipative given the estimated coefficients. Our findings offer

some robustness in this particular case as for m = {1, 2} and m ∈ [5, 10] our procedure

always points toward k0 = 1. For m = 3 and m = 4 we find k0 = 5 and k0 = 3 respectively.

We hence retain k0 = 1 and m = 10, therefore implying an imminent reversal date as we

are close to the last piece of the trajectory described by ϑ0dk0 . The selected piece of the
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Figure 3: El Niño reversal forecast
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trajectory is represented in Figure 3. We then deduce the reversal date and we compute

the future values of Xt up to Xt+h = 0, with h = k0 + 1, that is when the SOI goes back to

its central value. We find that El Niño should reverse just after February 1992, reaching

a peak at x̂t+1 = −4.60. When compared with the out-of-sample period, the reversal date

appeared to be very accurately predicted. However, the magnitude of the peak reached

during this El Niño occurrence is overestimated as xt+1 = −3.04.

To ensure the robustness of our approach, following the same procedure used to predict

the reversal date in Figure 3, we predict all El Niño and La Niña anomalies in the out-of-

sample dataset (from 01/1992 to 01/2024). The results are summarized in Table 7. For

an El Niño (or La Niña) event, we start our forecasting procedure at the first date when

the SOI is below -1 (or above 1) before the end date of an identified El Niño phenomenon,

called the start date in Table 7; the end date is when the SOI returns between -1 and 0 (or

1 and 0). We also forecast the peak date, defined as the minimum (or maximum) value of
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the SOI before the start and end dates. Table 7 shows that for all El Niño and La Niña

occurrences (14) in the out-of-sample dataset, our procedure leads to an average error of

0.42 months in finding the peak date and 0.57 months in finding the end date compared

to the true peak and end dates. We also report in Table 7 the selected k0 and m from

our procedure. For SOI, the choice of these two parameters is robust, mainly m = 10 and

k0 = 2 are chosen.

Table 7: Forecasting out-of-sample El Niño and La Niña anomalies
Type of anomaly El Niño El Niño La Niña El Niño La Niña La Niña El Niño La Niña La Niña La Niña La Niña

Start date 12/1991 07/1994 11/2007 12/2009 07/2010 11/2010 07/2015 11/2021 02/2022 08/2022 11/2022

Peak date 01/1992 09/1994 02/2008 02/2010 09/2010 12/2010 10/2015 01/2021 03/2022 10/2022 12/2022

End date 04/1992 10/1994 03/2008 03/2010 11/2010 04/2011 11/2015 03/2021 05/2022 11/2022 02/2023

Forecasted Peak 01/1992 09/1994 02/2008 03/2010 08/2010 01/2011 09/2015 01/2021 04/2022 10/2022 01/2023

Forecasted End 02/1992 10/1994 03/2008 04/2010 09/2010 02/2011 10/2015 02/2021 05/2022 11/2022 02/2023

Peak forecast error 0 0 0 1 -1 1 -1 0 1 0 -1

End forecast error -2 0 0 1 -1 -2 -1 -1 0 0 0

k0 1 2 3 3 1 2 2 2 2 2 2

m 10 10 10 9 10 10 10 10 10 10 10
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7 Conclusion

For α-stable infinite moving averages, the conditional distribution of future paths given the

observed past trajectory during extreme events is obtained based on a new spectral rep-

resentation of stable random vectors on unit cylinders relative to semi-norms. In contrast

to usual norm representations, this yields a multivariate regularly varying tails property

that is appropriate for prediction purposes, however not all stable random vectors can

be represented on semi-norm unit cylinders. A characterisation is provided and reveals

that predictions are possible if and only if the process is “anticipative enough”. Finite

length paths of α-stable moving averages, which are themselves multivariate α-stable, are

embedded into this framework.

Our approach also shows that instead of their attractive “causal” interpretation, non-

anticipative processes appear to rather presume, by construction, the unpredictability of

extreme events. Anticipative processes, however, instead of “depending on the future”,

rather assume that future events feature early visible signs betraying their incoming occur-

rences. These early signs take the form of emerging trends and patterns that an observer

can identify and use to infer about future potential outcomes. In some particular cases,

we demonstrate that the trajectory does not leave room for indeterminacy and can be

deduced, in theory with certainty, and practice with a very high level of confidence.

We use Monte-Carlo simulations to illustrate two applications derived from our theo-

retical results: forecasting crash probabilities and forecasting crash dates. We also discuss

some sources of uncertainty that are likely to arise in finite sample and non-asymptotic

frameworks. The numerical analysis confirms that both the two procedures we implement

are easy to use and perform well in a wide range of situations. To give more insights regard-

ing the empirical relevance of the semi-norm representation of α-stable moving averages we

show how climate anomalies can be predicted accurately. In particular, the probabilities

of occurrence of the so-called La Niña and El Niño episodes are estimated. For a specific

El Niño episode, we also detect very precisely, out-of-sample, the reversal date.
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8 Proofs

8.1 Proof of Proposition 2.1

Consider first the case where either α ̸= 1 or X is S1S. We only provide the proof for α ̸= 1

as it is similar under both assumptions.

Assume that Γ(K∥·∥) = 0 and let us show that X admits a representation of the unit

cylinder C∥·∥
d relative to the semi-norm ∥ · ∥. The characteristic function of X writes for

any u ∈ Rd, with a = tg(πα/2),

φX(u) = exp
{

−
∫

Sd

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
Γ(ds) + i ⟨u,µ0⟩

}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
Γ(ds) + i ⟨u,µ0⟩

}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s

∥s∥
⟩|α − ia(⟨u, s

∥s∥
⟩)<α>

)
∥s∥αΓ(ds) + i ⟨u,µ0⟩

}

= exp
{

−
∫

T∥·∥(Sd\K∥·∥)

(
|⟨u, s′⟩|α − ia(⟨u, s′⟩)<α>

)∥∥∥∥ s′

∥s′∥e

∥∥∥∥α

Γ ◦ T−1
∥·∥ (ds′) + i ⟨u,µ0⟩

}

= exp
{

−
∫

C
∥·∥
d

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
∥s∥−α

e Γ ◦ T−1
∥·∥ (ds)︸ ︷︷ ︸

Γ∥·∥(ds)

+i ⟨u,µ0⟩
}

where we used the change of variable s′ = T∥·∥(s) = s/∥s∥ between the third and fourth

lines, which yields the representation on C
∥·∥
d .

Reciprocally, assume that X is representable on C∥·∥
d . By definition of the representability

of X on C∥·∥
d , there exists a measure γ∥·∥ on C∥·∥

d and a non-random vector m0
∥·∥ ∈ Rd such

that

φX(u) = exp
{

−
∫

C
∥·∥
d

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
γ∥·∥(ds) + i ⟨u,m0

∥·∥⟩
}
.
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With the change of variable s′ = T−1
∥·∥ (s) = s/∥s∥e,

φX(u) = exp
{

−
∫

C
∥·∥
d

(
|⟨u, s

∥s∥e
⟩|α − ia(⟨u, s

∥s∥e
⟩)<α>

)
∥s∥α

e γ
∥·∥(ds) + i ⟨u,m0

∥·∥⟩
}

= exp
{

−
∫

T −1
∥·∥ (C∥·∥

d
)

(
|⟨u, s′⟩|α − ia(⟨u, s′⟩)<α>

) ∥∥∥∥ s′

∥s′∥

∥∥∥∥α

e

γ∥·∥ ◦ T∥·∥(ds′) + i ⟨u,m0
∥·∥⟩
}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
∥s∥−αγ∥·∥ ◦ T∥·∥(ds) + i ⟨u,m0

∥·∥⟩
}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
γ(ds) + i ⟨u,m0

∥·∥⟩
}
,

where γ(ds) := ∥s∥−αγ∥·∥ ◦ T∥·∥(ds). Letting now γ(A) := γ(A∩ (Sd \K∥·∥)) for any Borel

set A of Sd, we have

φX(u) = exp
{

−
∫

Sd

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
γ(ds) + i ⟨u,m0

∥·∥⟩
}
.

By the unicity of the spectral representation of X on Sd, we necessarily have (Γ,µ0) =

(γ,m0
∥·∥). Thus, γ and Γ have to coincide, and in particular

Γ(K∥·∥) = γ(K∥·∥) = γ(K∥·∥ ∩ (Sd \K∥·∥)) = γ(∅) = 0.

Given that Γ = γ and Γ(K∥·∥) = 0, we can follow the initial steps of the proof to show

that γ∥·∥ = Γ∥·∥.

Consider now the case where α = 1 and X is not symmetric. Assume first that∫
Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞, that is, Γ(K∥·∥) = 0 and

∫
Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞. With

a = 2/π,

φX(u) = exp
{

−
∫

Sd

(
|⟨u, s⟩| + ia⟨u, s⟩ ln |⟨u, s⟩|

)
Γ(ds) + i ⟨u,µ0⟩

}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s

∥s∥
⟩| + ia⟨u, s

∥s∥
⟩ ln |⟨u, s

∥s∥
⟩|
)

∥s∥Γ(ds)

+ i ⟨u,µ0⟩ − ia

∫
Sd\K∥·∥

⟨u, s⟩ ln ∥s∥Γ(ds)
}
.
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We have
∫

Sd\K∥·∥⟨u, s⟩ ln ∥s∥Γ(ds) =
∑d

i=1 ui
∫

Sd\K∥·∥ si ln ∥s∥Γ(ds) = ⟨u, µ̃⟩, and thus,

i ⟨u,µ0⟩ − ia

∫
Sd\K∥·∥

⟨u, s⟩ ln ∥s∥Γ(ds) = i⟨u,µ0
∥·∥⟩.

The condition
∫

Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞, ensures that |µ0

∥·∥| < +∞. Again with the

change of variable s′ = T∥·∥(s) = s/∥s∥, we get

φX(u) = exp
{

−
∫

T∥·∥(Sd\K∥·∥)

(
|⟨u, s′⟩| + ia⟨u, s′⟩ ln |⟨u, s′⟩|

)∥∥∥∥ s′

∥s′∥e

∥∥∥∥α

Γ ◦ T−1
∥·∥ (ds′) + i⟨u,µ0

∥·∥⟩
}

= exp
{

−
∫

C
∥·∥
d

(
|⟨u, s⟩| + ia⟨u, s⟩ ln |⟨u, s⟩|

)
∥s∥−α

e Γ ◦ T−1
∥·∥ (ds)︸ ︷︷ ︸

Γ∥·∥(ds)

+i⟨u,µ0
∥·∥⟩
}

Reciprocally, assume there exists a measure γ∥·∥ on C
∥·∥
d satisfying (2.4) and a non-

random vector m0
∥·∥ ∈ Rd such that

φX(u) = exp
{

−
∫

C
∥·∥
d

(
|⟨u, s⟩| + ia⟨u, s⟩ ln |⟨u, s⟩|

)
γ∥·∥(ds) + i ⟨u,m0

∥·∥⟩
}
.

First, we can see that

φX(u) = exp
{

−
∫

C
∥·∥
d

[(
|⟨u, s

∥s∥e
⟩| + ia⟨u, s

∥s∥e
⟩ ln |⟨u, s

∥s∥e
⟩|
)
∥s∥e + ia⟨u, s⟩ ln ∥s∥e

]
γ∥·∥(ds)

+ i ⟨u,m0
∥·∥⟩
}
.

We will later show the following result:

Lemma 8.1 Let γ∥·∥ a Borel measure on C
∥·∥
d satisfying (2.4). Then,∫

C
∥·∥
d

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞. (8.1)

Assuming Lemma 8.1 holds, then by the Cauchy-Schwarz inequality, we have
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∫
C

∥·∥
d

|⟨u, s⟩|
∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞, and thus

φX(u) = exp
{

−
∫

C
∥·∥
d

(
|⟨u, s

∥s∥e
⟩| + ia⟨u, s

∥s∥e
⟩ ln |⟨u, s

∥s∥e
⟩|
)
∥s∥eγ

∥·∥(ds)

+ i ⟨u,m0
∥·∥⟩ − ia

∫
C

∥·∥
d

⟨u, s⟩ ln ∥s∥eγ
∥·∥(ds)

}
,

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s′⟩| + ia⟨u, s′⟩ ln |⟨u, s′⟩|

)
γ(ds′)

+ i ⟨u,m0
∥·∥⟩ − ia

∫
Sd\K∥·∥

⟨u, s′⟩ ln ∥s′∥γ(ds′)
}
,

where we used the change of variable s′ = T−1
∥·∥ (s) = s/∥s∥e, and γ(ds) := ∥s∥−1γ∥·∥ ◦

T∥·∥(ds). Letting then γ(A) := γ(A∩ (Sd \K∥·∥)) for any Borel set A of Sd and m̃ := (m̃i)

with m̃i =
∫

Sd\K∥·∥ si ln ∥s∥γ(ds), j = 1, . . . , d, we get

φX(u) = exp
{

−
∫

Sd

(
|⟨u, s⟩| + ia⟨u, s⟩ ln |⟨u, s⟩|

)
γ(ds) + i ⟨u,m0

∥·∥ − am̃⟩
}
,

and X admits the pair (γ,m0
∥·∥ − am̃) for spectral representation on the Euclidean unit

sphere. The unicity of the spectral representation of X on Sd implies that (Γ,µ0) =

(γ,m0
∥·∥ − am̃). Thus, γ and Γ have to coincide, and in particular

Γ(K∥·∥) = γ(K∥·∥) = γ(K∥·∥ ∩ (Sd \K∥·∥)) = γ(∅) = 0,

m̃i =
∫

Sd\K∥·∥
si ln ∥s∥Γ(ds), i = 1, . . . , d.

Last, as
∫

C
∥·∥
d

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞ (Lemma 8.1) and Γ(K∥·∥) = 0, we have by a

change of variable∫
C

∥·∥
d

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) =
∫

Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣∥s∥−1γ∥·∥ ◦ T∥·∥(ds)

=
∫

Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣γ(ds)

=
∫

Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds)

< +∞,
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which concludes the proof of Proposition 2.1.

Proof of Lemma 8.1

Notice that there exists a positive real number b such that for all s ∈ C
∥·∥
d , ∥s∥e ≥ b because

∥s∥ = 1. Letting M > 0, we have for all u ∈ Rd

∫
C

∥·∥
d

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) =
∫

C
∥·∥
d

∩{b≤∥s∥e≤M}
+
∫

C
∥·∥
d

∩{∥s∥e>M}
:= I1 + I2.

We will show that both I1 and I2 are finite. Focus first on I2. From (2.4), we know that

for all u ∈ Rd

∫
C

∥·∥
d

|⟨u, s⟩|
∣∣∣ ln |⟨u, s⟩|

∣∣∣γ∥·∥(ds) =
∫

C
∥·∥
d

∩{b≤∥s∥e≤M}
+
∫

C
∥·∥
d

∩{∥s∥e>M}
< +∞. (8.2)

and thus, in particular∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln |⟨u, s⟩|
∣∣∣γ∥·∥(ds)

=
∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln ∥s∥e + ln |⟨u, s

∥s∥e
⟩|
∣∣∣γ∥·∥(ds) < +∞.

(8.3)

By the triangular inequality, for all u ∈ Rd,∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln ∥s∥e + ln |⟨u, s

∥s∥e
⟩|
∣∣∣γ∥·∥(ds)

=
∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln ∥s∥e

∣∣∣∣∣∣∣1 + ln |⟨u, s/∥s∥e⟩|
ln ∥s∥e

∣∣∣∣γ∥·∥(ds)

≥
∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln ∥s∥e

∣∣∣∣∣∣∣∣1 −
∣∣∣∣ ln |⟨u, s/∥s∥e⟩|

ln ∥s∥e

∣∣∣∣
∣∣∣∣∣γ∥·∥(ds)

(8.4)

Let us now partition the space Rd into subsets R1, . . . , Rd such that, for any i = 1, . . . , d

and any s = (s1, . . . , sd) ∈ Ri, sup
j

|sj | = |si|.
13 We have by (8.3)-(8.4) that for any

13Strictly speaking, (R1, . . . , Rd) is not a partition of Rd as the Ri’s may intersect because of ties in the

components of vectors. This will not affect the proof.
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i = 1, . . . , d, any u ∈ Rd,∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}∩Ri

|⟨u, s⟩|
∣∣∣ ln ∥s∥e

∣∣∣∣∣∣∣∣1 −
∣∣∣∣ ln |⟨u, s/∥s∥e⟩|

ln ∥s∥e

∣∣∣∣
∣∣∣∣∣γ∥·∥(ds) < +∞.

Denoting (e1, . . . , ed) the canonical orthonormal basis of Rd, evaluate now the above at

u = ei. We get that∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}∩Ri

|⟨ei, s⟩|
∣∣∣ ln ∥s∥e

∣∣∣∣∣∣∣∣1 −
∣∣∣∣ ln |⟨ei, s/∥s∥e⟩|

ln ∥s∥e

∣∣∣∣
∣∣∣∣∣γ∥·∥(ds) < +∞. (8.5)

Let us show that s 7−→ ln |⟨ei, s/∥s∥e⟩| is a bounded function for s ∈ {s′ ∈ C
∥·∥
d : ∥s′∥e >

M} ∩ Ri. Ad absurdum, if it is not bounded, then for any A > 0, there exists s ∈ {s′ ∈

C
∥·∥
d : ∥s′∥e > M} ∩Ri such that ∣∣∣ ln |⟨ei, s/∥s∥e⟩|

∣∣∣ > A.

Taking the sequence An = n for any n ≥ 1, we get that there exists a sequence (sn),

sn ∈ {s′ ∈ C
∥·∥
d : ∥s′∥e > M} ∩Ri such that∣∣∣ ln |⟨ei, sn/∥sn∥e⟩|

∣∣∣ > n.

Thus, for all n ≥ 1

0 ≤ |⟨ei, sn/∥sn∥e⟩| ≤ e−n.

and

|⟨ei, sn/∥sn∥e⟩| −→
n→+∞

0.

Consider now the decomposition of sn/∥sn∥e in the orthonormal basis (e1, . . . , ed),

sn/∥sn∥e =
d∑

j=1
⟨ej , sn/∥sn∥e⟩ej .

As sn ∈ Ri for all n ≥ 1, we also have that sn/∥sn∥e ∈ Ri for all n ≥ 1, and thus, for any

j = 1, . . . , d

0 ≤ |⟨ej , sn/∥sn∥e⟩| ≤ |⟨ei, sn/∥sn∥e⟩| −→
n→+∞

0.
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Hence, sn/∥sn∥e −→
n→+∞

0, which is impossible since
∥∥∥sn/∥sn∥e

∥∥∥
e

= 1 for all n ≥ 1. The

function s 7−→ ln |⟨ei, s/∥s∥e⟩| is thus bounded on {s ∈ C
∥·∥
d : ∥s∥e > M} ∩ Ri, say∣∣∣ ln |⟨ei, s/∥s∥e⟩|

∣∣∣ ≤ A for some A > 0. Provided M is taken large enough (e.g., M > 2A),

we will have in (8.5)∣∣∣∣∣1 −
∣∣∣∣ ln |⟨ei, s/∥s∥e⟩|

ln ∥s∥e

∣∣∣∣
∣∣∣∣∣ = 1 −

∣∣∣∣ ln |⟨ei, s/∥s∥e⟩|
ln ∥s∥e

∣∣∣∣ ≥ 1 − A

M
> 0,

which thus yields for all i = 1, . . . , d∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}∩Ri

|⟨ei, s⟩|
∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞.

As |⟨ei, s⟩| ≥ ∥s∥ee
−A, we further get that∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}∩Ri

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞,

and because
⋃

i=1,...,d
Ri = Rd,

I2 =
∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}
∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds)

≤
d∑

i=1

∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}∩Ri

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞.

Let us now show that I1 is finite. Assuming for a moment that

γ∥·∥
(
{s′ ∈ C

∥·∥
d : b ≤ ∥s′∥e ≤ M}

)
< +∞,

we get

I1 =
∫

{s′∈C
∥·∥
d

: b≤∥s′∥e≤M}
∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds)

≤
(

max
x∈[b,M ]

x| ln x|
)
γ∥·∥

(
{s′ ∈ C

∥·∥
d : b ≤ ∥s′∥e ≤ M}

)
,

because x 7−→ x| ln x| is a bounded function on [b,M ], and thus I1 < +∞. We now show

that γ∥·∥ is indeed finite on the set {s′ ∈ C
∥·∥
d : b ≤ ∥s′∥e ≤ M}.
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Proceeding as in the case of I2, it can be obtained that for i = 1, . . . , d, the function

s 7−→ ln |⟨ei, s/∥s∥e⟩| is bounded on the set {s′ ∈ C
∥·∥
d : b ≤ ∥s′∥e ≤ M} ∩ Ri. Say,

again, that
∣∣∣ ln |⟨ei, s/∥s∥e⟩|

∣∣∣ ≤ A for some A > 0. Then, |⟨ei, s⟩| ≥ ∥s∥ee
−A, and for any

λ > 2b−1eA, we have

|⟨λei, s⟩| ≥ 2,

for any i = 1, . . . , d, s ∈ {s′ ∈ C
∥·∥
d : b ≤ ∥s′∥e ≤ M} ∩ Ri. From (8.2), we have for any

u ∈ Rd ∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}
|⟨u, s⟩|

∣∣∣ ln |⟨u, s⟩|
∣∣∣γ∥·∥(ds) < +∞,

and thus, for any u ∈ Rd,∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}∩Ri

|⟨u, s⟩|
∣∣∣ ln |⟨u, s⟩|

∣∣∣γ∥·∥(ds) < +∞,

for any i = 1, . . . , d. Evaluating the above in particular at u = λei, for any λ > 2b−1eA,

we get ∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}∩Ri

|⟨λei, s⟩|
∣∣∣ ln |⟨λei, s⟩|

∣∣∣γ∥·∥(ds) < +∞.

Noticing that x 7−→ x| ln x| is increasing on [1,+∞) and that |⟨λei, s⟩| ≥ 2 for any s in the

domain of integration, we have |⟨u, s⟩|
∣∣∣ ln |⟨u, s⟩|

∣∣∣ ≥ 2 ln 2, and∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}∩Ri

γ∥·∥(ds) < +∞,

for any i = 1, . . . , d. Hence,∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}
γ∥·∥(ds) ≤

d∑
i=1

∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}∩Ri

γ∥·∥(ds) < +∞,

and γ∥·∥
(
{s′ ∈ C

∥·∥
d : b ≤ ∥s′∥e ≤ M}

)
is finite. 2

8.2 Proof of Proposition 2.2

The proposition is an immediate consequence of Bayes formula and of the following result,

which is an adaptation of Theorem 4.4.8 by Samorodnitsky and Taqqu (1994) Samorod-

nitsky and Taqqu (1994) to seminorms.
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Proposition 8.1 Let X = (X1, . . . , Xd) be an α-stable random vector and let ∥ · ∥ be a

seminorm on Rd such that X is representable on C
∥·∥
d . Then, for every Borel set A ⊆ C

∥·∥
d

with Γ∥·∥(∂A) = 0,

lim
x→+∞

xαP
(
∥X∥ > x,

X

∥X∥
∈ A

)
= CαΓ∥·∥(A), (8.6)

with Cα = 1 − α

Γ(2 − α) cos(πα/2) if α ̸= 1, and C1 = 2/π.

Proof.

We follow the proof of Theorem 4.4.8 by Samorodnitsky and Taqqu (1994). The main

hurdle is to show that, with ∥·∥ a semi-norm, K∥·∥ = {s ∈ Sd : ∥s∥ = 0}, and Γ∥·∥(K∥·∥) =

0, we have the series representation of X, (X1, . . . , Xd) d= (Z1, . . . , Zd) where

Zk = (CαΓ∥·∥(C∥·∥
d ))1/α

∞∑
i=1

[Γ−1/α
i S

(k)
i − bi,k(α)], k = 1, . . . , d, (8.7)

with Si = (S(1)
i , . . . , S

(d)
i ), i ≥ 1, are i.i.d. C∥·∥

d -valued random vectors with common law

Γ∥·∥/Γ∥·∥(C∥·∥
d ) and the bi,k(α)’s are constants.

By Proposition 2.1, we know that X admits a characteristic function of the form (2.1). This

allows to restate the integral representation Theorem 3.5.6 in Samorodnitsky and Taqqu

(1994) on the semi-norm unit cylinder as follows: with the measurable space (E, E) =

(C∥·∥
d ,Borelσ-algebra onC∥·∥

d ), let M be an α-stable random measure on (E, E) with control

measure m = Γ∥·∥, skewness intensity β( · ) ≡ 1 (see Definition 3.3.1 in Samorodnitsky and

Taqqu (1994) for details). Letting also fj : C∥·∥
d −→ R defined by fj

(
(s1, . . . , sd)

)
= sj ,

j = 1, . . . , d, then

X
d=
(∫

C
∥·∥
d

f1(s)M(ds), . . . ,
∫

C
∥·∥
d

fd(s)M(ds)
)

+ µ∥·∥.

This representation can be checked directly by comparing the characteristic functions of

the left-hand and right-hand sides. We can now apply Theorem 3.10.1 in Samorodnitsky

and Taqqu (1994) to the above integral representation with (E, E ,m) the measure space

as described before, and m̂ = Γ∥·∥/Γ∥·∥(C∥·∥
d ). This establishes (8.7). The rest of the proof
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is similar to that of Theorem 4.4.8 in Samorodnitsky and Taqqu (1994). We rely on the

triangle inequality property of semi-norms and the fact that any norm is finer than any

semi-norm in finite dimension.14
2

8.3 Proof of Lemma 3.1

From Proposition 2.1, we know that a necessary condition for the representability of Xt

on C
∥·∥
m+h+1 is Γ(K∥·∥) = 0, where K∥·∥ = {s ∈ Sm+h+1 : ∥s∥ = 0}. This condition is also

sufficient when either α ̸= 1 or α = 1, β = 0. Using the fact that Γ only charges discrete

atoms on C
∥·∥
m+h+1,

Γ(K∥·∥) = 0 ⇐⇒ {s ∈ Sm+h+1 : Γ({s}) > 0} ∩K∥·∥ = ∅

⇐⇒ ∀s ∈ Sm+h+1,
[
Γ({s}) > 0 =⇒ ∥s∥ > 0

]
⇐⇒ ∀k ∈ Z,

[
∥dk∥e > 0 =⇒ ∥dk∥ > 0

]
⇐⇒ ∀k ∈ Z,

[
∥dk∥ = 0 =⇒ ∥dk∥e = 0

]
⇐⇒ ∀k ∈ Z,

[
∥dk∥ = 0 =⇒ dk = 0

]
⇐⇒ ∀k ∈ Z,

[
(dk+m, . . . , dk) = 0 =⇒ (dk+m, . . . , dk−h) = 0

]
,

by (3.1). Now assume that the following holds:

∀k ∈ Z,
[
(dk+m, . . . , dk) = 0 =⇒ (dk+m, . . . , dk−h) = 0

]
. (8.8)

Then, if for some particular k0 ∈ Z, we have

(dk0+m, . . . , dk0) = 0.

It implies that

(dk0+m, . . . , dk0−h) = 0,

14We say that a norm N is finer than a semi-norm Ns if there is a positive constant C such that

Ns(x) ≤ CN(x) for any x ∈ Rd.
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and especially, as we assume h ≥ 1,

(d(k0−1)+m, . . . , dk0−1) = 0.

Invoking (8.8), we deduce by recurrence that for any n ≥ 0,

(d(k0−n)+m, . . . , dk0−n) = 0.

Therefore, (8.8) implies

∀k ∈ Z,
[
(dk+m, . . . , dk) = 0 =⇒ ∀ℓ ≤ k − 1, dℓ = 0

]
The reciprocal is clearly true. This establishes that (3.7) is a necessary and sufficient

condition for Xt to be representable on C
∥·∥
d in the cases where either α ̸= 1, or α = 1,

β = 0.

In the case α = 1, β ̸= 0, Proposition 2.1 states that the necessary and sufficient

condition for representability reads
∫

Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞. That is

Γ(K∥·∥) = 0 and
∫

Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞.

Substituting Γ by its expression in (3.6), the above condition holds if and only if (3.7) is

true and

σ
∑

ϑ∈S1

∑
k∈Z

wϑ∥dk∥e

∣∣∣∣∣ ln
∥∥∥∥ ϑdk

∥dk∥e

∥∥∥∥
∣∣∣∣∣ < +∞,

the latter being equivalent to

∑
k∈Z

∥dk∥e

∣∣∣∣∣ ln ∥dk∥
∥dk∥e

∣∣∣∣∣ < +∞.

8.4 Proof of Proposition 3.1

By Definition 3.1, (Xt) is past-representable if and only if there exists m ≥ 0, h ≥ 1 such

that the vector (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) is representable on C∥·∥
m+h+1. Consider first
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point (ι)(a), that is, the case α ̸= 1, (α, β) = (1, 0). By Lemma 3.1,

(Xt) is past-representable ⇐⇒ There exist m ≥ 0, h ≥ 1, such that (3.7) holds

⇐⇒ ∃m ≥ 0, ∀k ∈ Z,
[
dk+m = . . . = dk = 0 =⇒ ∀ℓ ≤ k − 1, dℓ = 0

]
.

Thus,

(Xt) not past-representable ⇐⇒ ∀m ≥ 0, ∃k ∈ Z, dk+m = . . . = dk = 0 and ∃ℓ ≤ k − 1, dℓ ̸= 0

⇐⇒ ∀m ≥ 0, ∃k ∈ Z, dk+m = . . . = dk = 0 and dk−1 ̸= 0

⇐⇒ ∀m ≥ 1, ∃k ∈ Z, dk+m = . . . = dk+1 = 0 and dk ̸= 0

⇐⇒ sup{m ≥ 1 : ∃k ∈ Z, dk+m = . . . = dk+1 = 0, dk ̸= 0} = +∞,

hence (3.10).

Regarding the last statement of point (ι)(a), assume first that m0 < +∞ and m ≥ m0.

Property (3.7) necessarily holds with m0. Indeed, if it did not, there would exist k ∈ Z

such that

dk+m0 = . . . = dk = 0, and dℓ ̸= 0, for some ℓ ≤ k − 1,

and we would have found a sequence of consecutive zero values of length at least m0 + 1

preceded by a non-zero value, contradicting the fact that

m0 = sup{m ≥ 1 : ∃ k ∈ Z, dk+m = . . . = dk+1 = 0, and dk ̸= 0}.

As (3.7) holds with m0, it holds a fortiori for any m′ ≥ m0. Thus, Xt =

(Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) is representable for any m′ ≥ m0, h ≥ 1 by Lemma 3.1,

and (Xt) is in particular (m,h)-past-representable.

Reciprocally let m ≥ 0, h ≥ 1 and assume that (Xt) is (m,h)-past-representable. The

process (Xt) is thus in particular past-representable, which as we have shown previously,

implies that m0 < +∞. Ad absurdum, suppose now that 0 ≤ m < m0 < +∞. If m0 = 0,

there is nothing to do. Otherwise if m0 ≥ 1, by definition, there exists a k ∈ Z such that

dk+m0 = . . . = dk+1 = 0, and dk ̸= 0. (8.9)
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Because (Xt) is (m,h)-past-representable, we have by Lemma 3.1 that (3.7) holds with m.

As m < m0 and dk+m0 = . . . = dk+1 = 0, we thus have that dℓ = 0 for all ℓ ≤ k + 1, and

in particular dk = 0, hence the contradiction. We conclude that m ≥ m0.

Consider now point (ι)(b), i.e., the case α = 1 and β ̸= 0. From Lemma 3.1,

(Xt) is past-representable ⇐⇒ There exist m ≥ 0, h ≥ 1, such that (3.7) and (3.8) hold

From the previous proof, we moreover have that

∃ m ≥ 0, such that (3.7) holds ⇐⇒ m0 < +∞ ⇐⇒


m0 < +∞

∀ m′ ≥ m0, (3.7) holds

∀ m′ < m0, (3.7) does not hold

Hence

∃ m ≥ 0, h ≥ 1, such that (3.7) and (3.8) hold

⇐⇒



m0 < +∞

∀ m′ ≥ m0, (3.7) holds

∀ m′ < m0, (3.7) does not hold

∃ m ≥ 0, h ≥ 1, such that (3.7) and (3.8) hold.

The latter in particular implies m0 < +∞ and the existence of m ≥ m0, h ≥ 1 such that

(3.8) holds. Reciprocally, m0 < +∞

∃ m ≥ m0, h ≥ 1, such that (3.8) holds

=⇒


m0 < +∞

∀ m′ ≥ m0, (3.7) holds

∃ m ≥ m0, h ≥ 1, such that (3.8) holds,

which in particular implies that there exists m ≥ m0, h ≥ 1 such that both (3.7) and (3.8)

hold. Hence the past-representability of (Xt).
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In view of Definition 3.1, point (ιι) is a direct consequence of the second part of Proposition

2.1.

8.5 Proof of Corollary 3.1

Letting k0 be the greatest integer such that dk0 ̸= 0 (such an index exists by (3.3)), then

immediately, for any m ≥ 1, dk0+m = . . . = dk0+1 = 0 and therefore m0 = +∞.

8.6 Proof of Corollary 3.2

We first show that deg(ψ) ≥ 1 if and only if m0 < +∞.

Clearly, if deg(ψ) = 0, then Xt =
∑k0

k=−∞ dkεt+k for some k0 in Z and m0 = +∞.

Reciprocally, assume deg(ψ) = p ≥ 1. Let us first show that (3.10) holds.

Denote ψ(F )ϕ(B) =
∑p

i=−q φiF
i and Θ(F )H(B) =

∑s
k=−r θiF

i, for any non-negative

degrees q = deg(ϕ), r = deg(H), s = deg(Θ). From the recursive equation satisfied by

(Xt), we have that
p∑

i=−q

φiXt+i =
s∑

k=−r

θkεt+k

⇐⇒
p∑

i=−q

φi

∑
k∈Z

dkεt+k+i =
s∑

k=−r

θkεt+k

⇐⇒
∑
k∈Z

( p∑
i=−q

φidk−i

)
εt+k =

s∑
k=−r

θkεt+k. (8.10)

Proceeding by identification using the uniqueness of representation of heavy-tailed moving

averages (see Gouriéroux and Zakoian (2015)), we get that for |k| > max(r, s),
p∑

i=−q

φidk−i = 0. (8.11)

Ad absurdum, if (Xt) is not past-representable, then by Proposition 3.1

sup{m ≥ 1 : ∃k ∈ Z, dk+m = . . . = dk+1 = 0, dk ̸= 0} = +∞.
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Thus, there exists a sequence {mn : n ≥ 0}, mn ≥ 1, limn→+∞ = +∞, satisfying: for any

n ≥ 0, there is an index k ∈ Z such that

dk−p ̸= 0 and dk−p+1 = dk−p+2 = . . . = dk+mn = 0.

We can therefore construct a sequence (kn) such that the above relation holds for all

n ≥ 0. This sequence of integers in Z is either bounded or unbounded. We will show that

both cases lead to a contradiction.

First case: sup{|kn| : n ≥ 0} = +∞

There are two subsequences such that mg(n) −→ +∞ and |kg(n)| −→ +∞. For some n

large enough such that (8.11) holds and mg(n) ≥ p+ q, we have both
p∑

i=−q

φidkg(n)−i = 0.

and

dkg(n)−p ̸= 0, dkg(n)−p+1 = . . . = dkg(n)+q = 0.

Hence,

φpdkg(n)−p = 0,

which is impossible given that dkg(n)−p ̸= 0 and φp ̸= 0. Indeed, denoting

ψ(z) = 1 + ψ1z + . . . + ψpz
p, ψp ̸= 0 because deg(ψ) = p, it can be shown that

φp = ψp.

Second case: sup{|kn| : n ≥ 0} < +∞

Given that (kn) is a bounded sequence, there exists by the Bolzano-Weierstrass theorem

a convergent subsquence (kg(n)). As (kg(n)) takes only discrete values, it necessarily holds

that (kg(n)) reaches its limit at a finite integer n0 ≥ 1, that is, for all n ≥ n0, kg(n) =

limn→+∞ kg(n) := k̄ ∈ Z. Thus, for all n ≥ n0

dk̄ ̸= 0, and dk̄+mg(n)
= 0,
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and as mg(n) → +∞, we deduce that

dk̄ ̸= 0, and dk̄+ℓ = 0, for all ℓ ≥ 1.

The process (Xt) hence admit a moving average representation of the form

Xt =
k̄∑

k=−∞
dkεt+k, t ∈ Z. (8.12)

However, we also have by partial fraction decomposition

Xt = Θ(F )H(B)
ψ(F )ϕ(B) εt

= Θ(F )H(B) Bp

Bpψ(F )ϕ(B)εt

= Θ(F )H(B)Bp

[
b1(B)
Bpψ(F ) + b2(B)

ϕ(B)

]
εt

= Θ(F )H(B)
[
b1(B)
ψ(F ) + Bpb2(B)

ϕ(B)

]
εt,

for some polynomials b1 and b2 such that 0 ≤ deg(b1) ≤ p − 1, 0 ≤ deg(b2) ≤ q − 1 and

ϕ(B)b1(B) +Bpb2(B)ψ(F ) = 1. We can write in general

Θ(F )H(B)b1(B)
ψ(F ) =

+∞∑
k=−ℓ1

ckεt+k,

Θ(F )H(B)Bpb2(B)
ϕ(B) =

ℓ2∑
k=−∞

ekεt+k,

for some sequences of coefficients (ck), (ek), and where ℓ1 is the degree of the largest order

monomial in B of Θ(F )H(B)b1(B) (recall that F = B−1) and ℓ2 is the degree of the largest

monomial in F of BpΘ(F )H(B)b2(B). By (8.12), we deduce by identification that there is

some ℓ̄ ∈ Z such that ck = 0 for all k ≥ ℓ̄+ 1 and

Θ(F )H(B)b1(B)
ψ(F ) =

ℓ̄∑
k=−ℓ1

ckF
k.
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Necessarily, ℓ̄ ≥ ℓ1, otherwise Θ(F )H(B)b1(B)ψ−1(F ) = 0 which is impossible as all the

polynomials involved have non-negative degrees. Thus, we deduce that there exist two

polynomials P and Q of non-negative degrees such that

Θ(z−1)H(z)b1(z)
ψ(z−1) =

ℓ̄∑
k=−ℓ1

ckz
k := P (z−1) +Q(z), z ∈ C.,

which yields

Θ(z−1)H(z)b1(z) = ψ(z−1)(P (z−1) +Q(z)), z ∈ C. (8.13)

As deg(ψ) = p and ψ(z) = 0 if and only if |z| > 1, we know that there are p complex

numbers z1, . . . , zp such that 0 < |zi| < 1 and ψ(z−1
i ) = 0 for i = 1, . . . , p. Evaluating

(8.13) at the zi’s, we get that

Θ(z−1
i )b1(zi) = 0, for i = 1, . . . , p,

because H has no roots inside the unit circle and P and Q are of finite degrees. From the

fact that deg(b1) ≤ p− 1, we also know that for some zi0 , b(zi0) ̸= 0 which finally yields

Θ(z−1
i0

) = 0.

We therefore obtain that ψ and Θ have a common root, which is ruled out by assumption,

hence the contradiction. The sequence (kn) can thus be neither bounded nor unbounded,

which is absurd. We conclude that

m0 = sup{m ≥ 1 : ∃k ∈ Z, dk+m = . . . = dk+1 = 0, dk ̸= 0} < +∞.

Hence the equivalence between (ιι) and (ιιι).

Let us now show that whenever m0 < +∞, then (3.8) holds for any m ≥ m0.

As m0 < +∞, we have that for any m ≥ m0 and h ≥ 1, ∥dk∥ > 0 as soon as dk ̸= 0, for

all k ∈ Z (recall dk = (dk+m, . . . , dk, dk+1, . . . , dk−h)). For ARMA processes, the non-zero
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coefficients dk of the moving average necessarily decay geometrically (times a monomial)

as k → ±∞. To fix ideas, say dk ∼
k→±∞

akbλk, for constants a ̸= 0, b a non-negative

integer, and 0 < |λ| < 1, which may change according to whether k → +∞ or k → −∞ (if

deg(ϕ) = 0, then d−k = 0 for k ≥ 0 large enough, however, since we assume deg(ψ) ≥ 1, it

always holds that |dk| ∼
k→+∞

akbλk, for the non-zero terms dk). Hence,

dk ∼
k→±∞

akbλkd∗,

for some constant vector d∗ such that ∥d∗∥ > 0 (which may change according to whether

k → +∞ or k → −∞). We then have that

∥dk∥
∥dk∥e

−→
k→±∞

∥d∗∥
∥d∗∥e

> 0,

and

∥dk∥e

∣∣∣∣ ln (∥dk∥/∥dk∥e

)∣∣∣∣ ∼
k→±∞

const kbλk.

Therefore, for any m ≥ m0, h ≥ 1,

∑
k∈Z

∥dk∥e

∣∣∣∣ ln (∥dk∥/∥dk∥e

)∣∣∣∣ < +∞

The equivalence between (ι) and (ιιι) is now clear: on the one hand, if m0 < +∞,

then (3.8) holds for all m ≥ m0, h ≥ 1, which yields the (m,h)-past-representability of

(Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) for any m ≥ m0, h ≥ 1, by Lemma 3.1. In particular,

(Xt) is past-representable. On the other hand, assuming (Xt) is past-representable, then

necessarily m0 < +∞.

Regarding the last statement, it follows from the above proof that the condition m0 <

+∞ and m ≥ m0 is sufficient for (m,h)-past-representability. It is also necessary, as (3.7)

never holds with m < m0 (a fortiori, with m < m0 = +∞), concluding the proof.
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8.7 Proof of Proposition 4.1

By Proposition 2.2

P∥·∥
x (Xt, A|B) −→

x→+∞

Γ∥·∥(A ∩B(V ))
Γ∥·∥(B(V ))

.

The conclusion follows by considering the points of B(V ) and A ∩ B(V ) that are charged

by the spectral measure Γ∥·∥ in (4.2).

8.8 Proof of Lemma 4.1

By Proposition 3.1, we have

Γ∥·∥ =
∑

ϑ∈S1

∑
k∈Z

∥dk∥αδ{ ϑdk
∥dk∥

},
with dk = (ρk+m1{k+m≥0}, . . . , ρ

k−h1{k−h≥0}) and k ∈ Z. Thus,

dk =


0, if k ≤ −m− 1,

(ρk+m, . . . , ρ, 1, 0, . . . , 0), if −m ≤ k ≤ h,

ρk−hdh, if k ≥ h.

Therefore,

Γ∥·∥ =
∑

ϑ∈S1

[
h−1∑

k=−m

∥dk∥αδ{ ϑdk
∥dk∥

} +
+∞∑
k=h

|ρ|α(k−h)∥dh∥αδ{ ϑρk−hdh
|ρ|k−h∥dh∥

}].
Moreover,

∑
ϑ∈S1

+∞∑
k=h

|ρ|α(k−h)∥dh∥αδ{
sign(ρ)k−h ϑdh

∥dh∥

}
=
∑

ϑ∈S1

∥dh∥α 1
2

[ +∞∑
k=h

|ρ|α(k−h) + ϑβ
+∞∑
k=h

(ρ<α>)k−h

]
δ{ ϑdh

∥dh∥

}
=
∑

ϑ∈S1

1
1 − |ρ|α

∥dh∥αw̄ϑδ{ ϑ dh
∥dh∥

}.
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Finally, noticing that for k = −m and dk = (1, 0, . . . , 0),

Γ∥·∥ =
∑

ϑ∈S1

[
wϑ

h−1∑
k=−m

∥dk∥αδ{ ϑdk

∥dk∥

} + w̄ϑ

1 − |ρ|α
∥dh∥αδ{ ϑdh

∥dh∥

}]

=
∑

ϑ∈S1

[
wϑ

(
δ{(ϑ,0,...,0)} +

h−1∑
k=−m+1

∥dk∥αδ{ ϑdk

∥dk∥

})+ w̄ϑ

1 − |ρ|α
∥dh∥αδ{ ϑdh

∥dh∥

}]

=
∑

ϑ∈S1

[
wϑδ{(ϑ,0,...,0)} +

(
wϑ

h−1∑
k=−m+1

∥dk∥αδ{ ϑdk

∥dk∥

} + w̄ϑ

1 − |ρ|α
∥dh∥αδ{ ϑdh

∥dh∥

})].
8.9 Proof of Proposition 4.2

Lemma 8.2 Let Γ∥·∥ be the spectral measure given in Lemma 4.1 and assume that the ρ

is positive.

Letting (ϑ0, k0) ∈ I, consider

I0 :=
{
ϑ′dk′

∥dk′∥
: ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥
for (ϑ′, k′) ∈ I

}
.

For m ≥ 1, and 0 ≤ k0 ≤ h, then

I0 =
{
ϑ0dk′

∥dk′∥
: 0 ≤ k′ ≤ h

}
.

For m ≥ 1, and −m ≤ k0 ≤ −1, then

I0 =



{
ϑ0dk0

∥dk0∥

}
, if −m+ 1 ≤ k0 ≤ −1

{
ϑ0d0,k0

∥d0,k0∥

}
= {(ϑ0, 0, . . . , 0)} , if k0 = −m.

For m = 0, then

I0 =
{
ϑ0dk′

∥dk′∥
: k′ ∈ {1, . . . , h} ∪ {(0, 0)}

}
.

Proof.

Case m ≥ 1 and k0 ∈ {0, . . . , h}
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If k′ ∈ {−m, . . . ,−1}, the (m + 1)th component of f(dk′) is zero, whereas the (m + 1)th

component of f(dk0) is ρk0 ̸= 0. Necessarily, ϑ′f(dk′)/∥dk′∥ ≠ ϑ0f(dk0)/∥dk0∥ and

I0 =
{
ϑ′dk′

∥dk′∥
: ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥
for (ϑ′, k′) ∈ {−1,+1} × {0, . . . , h}

}
.

Now, with k′ ∈ {0, . . . , h}, we have that

f(dk′) = (ρk′+m, . . . , ρk′+1, ρk′),

f(dk0) = (ρk0+m, . . . , ρk0+1, ρk0),

and by (3.1) we also have that

∥dk′∥ = ∥(ρk′+m, . . . , ρk′+1, ρk′
,

h︷ ︸︸ ︷
0, . . . , 0)∥,

∥dk0∥ = ∥(ρk0+m, . . . , ρk0+1, ρk0 , 0, . . . , 0︸ ︷︷ ︸
h

)∥.

Thus,

ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

⇐⇒ ϑ′ρk′
f (d0)

|ρ|k′∥d0∥
= ϑ0ρ

k0f (d0)
|ρ|k0∥d0∥

⇐⇒ ϑ′ρℓ

∥d0∥
= ϑ0ρ

ℓ

∥d0∥
, ℓ = 0, . . . ,m

⇐⇒ ϑ′ϑ0
∥d0∥
∥d0∥

=
(
ρ

ρ

)ℓ

, ℓ = 0, . . . ,m

⇐⇒ ϑ′ϑ0 = 1

⇐⇒ ϑ′ = ϑ0,

because ρ ̸= 0 is assumed.

Case m ≥ 1 and k0 ∈ {−m, . . . , −1}

By comparing the place of the first zero component, it is easy to see that

ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

=⇒ k′ = k0.
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f(dk′) = (

m+1︷ ︸︸ ︷
ρk′+m, . . . , ρ, 1, 0, . . . , 0,

h︷ ︸︸ ︷
0, . . . , 0),

f(dk0) = (ρk0+m, . . . , ρ, 1, 0, . . . , 0︸ ︷︷ ︸
m+1

, 0, . . . , 0︸ ︷︷ ︸
h

),

and we also have that

∥dk′∥ = ∥(

m+1︷ ︸︸ ︷
ρk′+m, . . . , ρ, 1, 0, . . . , 0,

h︷ ︸︸ ︷
0, . . . , 0)∥,

∥dk0∥ = ∥(ρk0+m, . . . , ρ, 1, 0, . . . , 0︸ ︷︷ ︸
m+1

, 0, . . . , 0︸ ︷︷ ︸
h

)∥.

As k′ = k0 ≤ −1,

ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

⇐⇒ ϑ′ρℓ

∥dk0∥
= ϑ0ρ

ℓ

∥dk0∥
, ℓ = 0, . . . ,m+ k0, and k′ = k0

⇐⇒ ϑ′ϑ0
∥dk0∥
∥dk0∥

=
(
ρ

ρ

)ℓ

, ℓ = 0, . . . ,m+ k0, and k′ = k0.

Now if −m+ 1 ≤ k0 ≤ −1,

ϑ′ϑ0
∥dk0∥
∥dk0∥

=
(
ρ

ρ

)ℓ

, ℓ = 0, 1, . . . ,m+ k0, and k′ = k0

⇐⇒ ϑ′ = ϑ0 and k′ = k0.

If k0 = −m, given that (ϑ0, k0) ∈ I = S1 ×
(
{−m, . . . ,−1, 0, 1, . . . , h} ∪ {(0,−m)}

)
, and

as k′ = k0 = −m, we have that dk0 = d0,−m = (1, 0, . . . , 0). Hence

ϑ′ϑ0
∥dk0∥
∥dk0∥

=
(
ρ

ρ

)ℓ

, ℓ = 0, and k′ = k0 = −m ,

⇐⇒ ϑ′ = ϑ0 and k′ = k0 = −m

Case m = 0

If k0 ∈ {1, . . . , h} then f(dk0) = ρk0 and by (3.1), ∥dk0∥ = |ρ|k0 . Thus, ϑ0f(dk0)/∥dk0∥ =

ϑ0. If k0 = −m = 0, then f(dk0) = 1 and ϑ0f(dk0)/∥dk0∥ = ϑ0. The same holds for
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(ϑ′, k′) ∈ I and we obtain that

ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

⇐⇒ ϑ′ = ϑ0.

2

Let us now prove Proposition 4.2. By Proposition 4.1,

P∥·∥
x

(
Xt, Aϑ,k

∣∣∣B(V0)
)

−→
x→∞

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(d,k′)

∥dk′∥
∈ V0

})

Γ∥·∥

({
ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
∈ V0

}) . (8.14)

Focusing on the denominator, we have by (4.6)

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
∈ V0

})
= Γ∥·∥

({
ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})
We will now distinguish the cases arising from the application of Lemma 8.2. Recall that we

assume for this proposition that the ρ is positive. Thus, sign(ρ) = 1 and β̄ = β
1 − |ρ|α

1 − ρ<α>
=

β and w̄ϑ = wϑ in (4.5) for ϑ ∈ {−1,+1}.

Case m ≥ 1 and 0 ≤ k0 ≤ h

By Lemma 8.2,

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})

= Γ∥·∥
({

ϑ0dk′

∥dk′∥
: 0 ≤ k′ ≤ h

})

=
[
wϑ0

h−1∑
k′=0

∥dk′∥α + w̄ϑ0

1 − |ρ|α
∥dh∥α

]
By (3.1), for k′ ∈ {0, 1, . . . , h}

∥dk′∥ = ∥(ρk′+m, . . . , ρk′+1, ρk′
, 0, . . . , 0︸ ︷︷ ︸

h

)∥

= |ρ|k′−h∥(ρm+h, . . . , ρh+1, ρh, 0, . . . , 0︸ ︷︷ ︸
h

)∥

= |ρ|k′−h∥dh∥.
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Thus,

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})
= wϑ0∥dh∥α

[
h−1∑
k′=0

ρα(k′−h) + 1
1 − |ρ|α

]

= wϑ0∥dh∥α |ρ|−αh

1 − |ρ|α
.

Similarly for the numerator in (8.14), by (4.7),

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(dk′)

∥dk′∥
∈ V0

})

= Γ∥·∥
({

ϑ0dk′

∥dk′∥
∈ Aϑ,k : 0 ≤ k′ ≤ h

})

=


Γ∥·∥

({
ϑ0dk

∥dk∥

})
, if ϑ = ϑ0,

Γ∥·∥(∅), if ϑ ̸= ϑ0,

=


wϑ0∥dh∥α|ρ|α(k−h)δ{ϑ0}(ϑ), if 0 ≤ k ≤ h− 1,

wϑ0∥dh∥α 1
1 − |ρ|α

δ{ϑ0}(ϑ), if k = h.

The conclusion follows.

Case m ≥ 1 and −m ≤ k0 ≤ −1

We have by Lemma 8.2

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})
= Γ∥·∥

({
ϑ0dk0

∥dk0∥

})
.

If −m+ 1 ≤ k0 ≤ −1,

Γ∥·∥
({

ϑ0dk0

∥dk0∥

})
= wϑ0∥dk0∥α,

64



and

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(dk′)

∥dk′∥
∈ V0

})

= Γ∥·∥
(
Aϑ,k ∩

{
ϑ0dk0

∥dk0∥

})

=


Γ∥·∥

({
ϑ0dk0

∥dk0∥

})
, if ϑ = ϑ0, and k = k0,

Γ∥·∥(∅), if ϑ ̸= ϑ0 or k ̸= k0,

= wϑ0∥dk0∥αδ{ϑ0}(ϑ)δ{k0}(k).

If k0 = −m, then dk0 = d0,−m = (1, 0, . . . , 0), and

Γ∥·∥
({

ϑ0dk0

∥dk0∥

})
= Γ∥·∥

(
{ϑ0(1, 0, . . . , 0)}

)
= wϑ0 ,

and

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(dk′)

∥dk′∥
∈ V0

})

= Γ∥·∥
(
Aϑ,k ∩

{
ϑ0dk0

∥dk0∥

})

=

 Γ∥·∥
(
Aϑ,k ∩ {ϑ0(1, 0, . . . , 0)}

)
, if ϑ = ϑ0, and k = k0 = −m,

Γ∥·∥(∅), if ϑ ̸= ϑ0 or k ̸= k0,

= wϑ0δ{ϑ0}(ϑ)δ{k0}(k).

The conclusion follows as previously.

Case m = 0

65



By Lemma 8.2, as the ρ is positive

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})

= Γ∥·∥
({

ϑ0dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : k′ ∈ {0, . . . , h} ∪ {(0, 0)}

})

Given that ∥dk′∥ = |ρ|k′ , for any 1 ≤ k′ ≤ h,

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})

= wϑ0 + wϑ0

[
h−1∑
k′=1

∥dk′∥α + ∥dh∥α

1 − |ρ|α

]

= wϑ0

[
1 +

h−1∑
k′=1

|ρ|αk′ + |ρ|αh

1 − |ρ|α

]

= wϑ0

[
1 − |ρ|αh

1 − |ρ|α
+ |ρ|αh

1 − |ρ|α

]

= wϑ0
1

1 − |ρ|α
.
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Similarly, by (4.7),

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(dk′)

∥dk′∥
∈ V0

})

= Γ∥·∥
(
Aϑ,k ∩

{
ϑ0dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : k′ ∈ {0, . . . , h} ∪ {(0, 0)}

})

=


Γ∥·∥

({
ϑ0dk

∥dk∥

})
, if ϑ = ϑ0,

Γ∥·∥(∅), if ϑ ̸= ϑ0,

=


wjϑ0δ{ϑ0}(ϑ), if k = 0,

wϑ0 |ρ|αkδ{ϑ0}(ϑ), if 1 ≤ k ≤ h− 1,

wϑ0
|ρ|αh

1 − |ρ|α
δ{ϑ0}(ϑ), if k = h.

The conclusion follows.

8.10 Proof of Proposition 4.3

Lemma 8.3 Let Xt be the α-stable anticipative AR(2) (resp. fractionally integrated AR)

as in (4.8) (resp. (4.10)). With f as in (4.1), and for any m ≥ 1, h ≥ 0,

∀k, ℓ ≥ −m, ∀ϑ1, ϑ2 ∈ S1,

[
f(ϑ1dk)

∥dk∥
= f(ϑ2dℓ)

∥dℓ∥
=⇒ k = ℓ and ϑ1 = ϑ2

]
.

Proof.

The result is clear for both processes for −m ≤ k, ℓ ≤ −1. For k, ℓ ≥ 0,

f(ϑ1dk)
∥dk∥

= f(ϑ2dℓ)
∥dℓ∥

⇐⇒
[
∀ i = 0, . . . ,m, ϑ1dk+i

∥dk∥
= ϑ2dℓ+i

∥dℓ∥

]
⇐⇒ dk

dℓ
= dk+1
dℓ+1

= . . . = ϑ1ϑ2
∥dk∥
∥dℓ∥

. (8.15)
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The last statement in particular implies that dk

dℓ
= dk+1
dℓ+1

.

For the anticipative AR(2), if λ1 ̸= λ2, we then have

dk

dℓ
= dk+1
dℓ+1

⇐⇒ λk+1
1 − λk+1

2
λℓ+1

1 − λℓ+1
2

= λk+2
1 − λk+2

2
λℓ+2

1 − λℓ+2
2

⇐⇒ λk−ℓ
1 = λk−ℓ

2

⇐⇒ k = ℓ.

This case λ1 = λ2 = λ is similar. For the anticipative fractionally integrated AR, given

that Γ(z + 1) = zΓ(z) for any z ∈ C, we have

dk

dℓ
= dk+1
dℓ+1

⇐⇒ Γ(k + d)Γ(ℓ+ 1)
Γ(ℓ+ d)Γ(k + 1) = Γ(k + d+ 1)Γ(ℓ+ 2)

Γ(ℓ+ d+ 1)Γ(k + 2)

⇐⇒ Γ(ℓ+ d+ 1)Γ(k + 2)
Γ(ℓ+ d)Γ(k + 1) = Γ(k + d+ 1)Γ(ℓ+ 2)

Γ(k + d)Γ(ℓ+ 1)

⇐⇒ (k − ℓ)(d− 1) = 0

⇐⇒ k = ℓ.

Therefore, in all cases,

dk

dℓ
= dk+1
dℓ+1

= . . . = ϑ1ϑ2
∥dk∥
∥dℓ∥

=⇒ k = ℓ and ϑ1ϑ2 = 1.

2

Let us now prove Proposition 4.3. The spectral measure of Xt writes

Γ∥·∥ = σα
∑

ϑ∈S1

∑
k∈Z

wϑ∥dk∥αδ{ ϑdk
∥dk∥

},
where the sequences (dk) are given respectively by (4.9) and (4.11) for the anticipative

AR(2) and fractionally integrated processes. By Proposition 2.2,

P∥·∥
x

(
Xt, A

∣∣∣B(V0)
)

−→
x→∞

Γ∥·∥(A ∩B(V0))
Γ∥·∥(B(V0))

.
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On the one hand, we have by definition of B(V0), V0 and Lemma 8.3,

Γ∥·∥(B(V0)) = Γ∥·∥
({

ϑdk

∥dk∥
∈ B(V0) : (ϑ, k) ∈ {−1,+1} × Z

})

= Γ∥·∥
({

ϑdk

∥dk∥
∈ C

∥·∥
m+h+1 : ϑf(dk)

∥dk∥
∈ V0, (ϑ, k) ∈ {−1,+1} × Z

})

= Γ∥·∥
({

ϑdk

∥dk∥
∈ C

∥·∥
m+h+1 : ϑf(dk)

∥dk∥
= ϑ0f(dk0)

∥dk0∥
, (ϑ, k) ∈ {−1,+1} × Z

})

= Γ∥·∥
({

ϑ0dk0

∥dk0∥

})
.

Similarly, it is easily shown that

Γ∥·∥(A ∩B(V0)) = Γ∥·∥
(
A ∩

{
ϑ0dk0

∥dk0∥

})
.

The conclusion follows.
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